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Abstract
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rium is required to close the model. I illustrate the concept with applications

to policing/crime and market entry. In these examples, we see that very
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1 Introduction

Analysis of quantitative data to inform decisions is increasingly important to or-

ganizations and firms. For private companies, McAfee et al. (2012) argue that

improvements in the ability of managers to measure, store and collect information

about their business can result in large performance gains. However, data used

in economic decision making is often an imperfect measurement or proxy of the

underlying variables.

Examples of proxy variables that play an important role in driving allocation of

economic resources abound. GDP per capita guides entrepreneurs and traders in

assessing the relative economic vitality of countries in which they are considering

investment, and is used by governments in determining important policy decisions.

Yet as a proxy for living standards it has come in for criticism1. The use of citation

metrics is another case. Governments and academic institutions find these metrics

valuable for assessing academic impact, but there is debate around the extent to

which they are truly good measures2.

In this paper I propose a framework for modelling decision makers who naively

use possibly mismeasured proxies. The decision makers (henceforth DMs) in this

framework are assumed to form expectations about the impact of their actions

from the proxy variables they have available, treating the proxy variables as if they

were exactly identical to the true variables. This follows a tradition in economics

and psychology of modelling economic agents as ‘flawed statisticians’, for example

early work in behavioural economics on the ‘law of small numbers’ by Tversky and

Kahneman (1971) to more recent work testing the ‘What You See Is All There Is’

heuristic in experiments (Enke, 2020).

The structure of the agent’s problem is as follows. First they draw the realiza-

tion of two signal variables (s, z). These signals consist of a circumstance variable

s that affects utility but is not used in forming beliefs, and a control variable z

1See Coyle (2015) for an outline of various arguments in this debate.
2See Borchardt and Hartings (2018) for discussion and reference to work (Borchardt et al.,

2018) providing evidence that for academic chemists there are significant differences between the
level of citations a paper receives and perceived academic impact among scientists.
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that does not affect utility directly but does affect beliefs. They then choose an

action variable x, and both the action and control then affect the realization of an

outcome variable y. Agents are assumed to have a vNM utility function over the

outcome, action, and circumstance variables. Finally, a vector of proxy variables

(y•, x•, z•) is drawn from a distribution π that depends on (y, x, z), where each of

the true variables has a corresponding proxy. The DMs only have access to data

that gives them knowledge of the joint distribution of the proxies. Due to the

possible imperfections in the variables available, choices made by these decision

makers can affect the data used for belief formation. I define a notion of Proxy

Equilibrium which ensures consistency between these choices and the data.

A preview of the first example in the paper can be used to illustrate this struc-

ture. Suppose the decision maker is a municipal policymaker who must decide

on the number of police officers to employ. Before deciding, they first learn the

realization of a circumstance variable s that affects the cost of crime. The police

number x they choose then affects crime level y in the municipality. The poli-

cymaker needs to learn the relationship between their police numbers choice and

crime in order to make a decision. However the policymaker can only learn the

relationship from potentially noisy proxy variables x•, y•.

In the first example neglect of measurement error results in overly rigid policy.

Due to attenuation bias in the measured relationship between policing and crime,

municipal policymakers vary police numbers with the cost of crime less than they

would if they knew the true relationship. This rigidity can be extreme, there

exists a Proxy Equilibrium in which municipalities do not vary police numbers at

all. This is true regardless of how strong the true relationship between crime and

policing is. The example demonstrates the difference between a purely statistical

notion of imperfection in measurement and one informed by the possibility of

decision maker’s choices feeding back into the data. Due to feedback effects, there

is a stark discontinuity between the extent of imperfection in proxy variables and

the extent of the bias in the beliefs of the DMs.

In the second example, noisy measurement and equilibrium selection effects
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result in endogenous overoptimism and thus over-entry by firms deciding whether

to enter a market or not. Moreover, the impact of changes in measurement noise

can differ in important ways for pivotal firms who are on the margin between

different choices and non-pivotal firms who are not. Due to the impact on the

pivotal firm who must be indifferent between entering or not, more proxy ‘noise’

results in a greater extent of excessive entry. Without this equilibrium feedback

effect, the effect of noise on entry is ambiguous. This is in contrast to other

work on the behavioural bias caused by selection effects, such as Jehiel (2018) and

Esponda and Pouzo (2017), in which more noise has an ambiguous effect on entry

both in and out of equilibrium.

Finally, I build on the insights in these examples and give a characterization

of all strategies that could arise as Proxy Equilibria when the proxy variables are

arbitrarily close to being perfect measurements. I show that a strategy can be

implemented as a Proxy Equilibrium for some proxy mapping that is arbitrarily

close to perfect measurement if and only if it satisfies a Self-Confirming Optimal

property. Roughly, a strategy is Self-Confirming Optimal if it is optimal against

beliefs that coincide with rational expectations for at least any action-control

signal combinations that occur with positive probability under the strategy. The

characterization result clarifies a theme arising in the two examples; that small

measurement problems can have a large effect on beliefs when the equilibrium

strategy only puts weight on particular actions.

The concept draws a distinction between the fact that the DM knows the

realization of the signals and the action they have chosen but does not know

how these variables covary with the outcome they wish to forecast. The story I

have in mind is that the joint distribution over proxies is generated as a long run

steady state of some learning process. The learning process is not that of a long

lived agent who repeats the same decision problem enough times to generate an

asymptotic sample, but instead a short-lived agent who does not generate enough

experiences of the effect of their own action and signals and has to rely on a

large public dataset of potentially mismeasured proxies. For concreteness, in the
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policing example we can imagine a sequence of short lived municipal leaders. The

data generated from each municipal leader’s tenure is too sparse to apply the law

of large numbers, so the leaders have to draw inference from the experiences of

other municipalities in other time periods by using a national dataset designed for

social scientists researching crime.

The contribution of this paper is twofold. First, it contributes to the literature

on solution concepts with bounded rational expectations by considering issues of

measurement and proxies in an equilibrium framework. The concept generally

does not fall neatly in others in the literature, and I explore these connections in

Section 6. The concept demonstrates how issues of belief distortion similar to that

explored in the growing literature on misspecified models can occur purely as a

result of the neglect of measurement noise. Secondly, it develops applications of

the concept to a variety of settings in which organizations use data to form beliefs.

It shows how issues arising from calculated decision making feeding back into data

can be important considerations for evaluating the use of statistical information

by economic organizations.

2 Modelling Set Up

The space of variables V can be divided into four dimensions. There is a set of

circumstance signals S ⊆ R with realization s, a set of control signals Z ⊆ R with

realization z, a set of actions X ⊆ R with realization x and a set of outcomes

Y ⊆ R with realization y. The variable space can thus be described as V =

Y ×X × Z × S. The circumstance signal represents private payoff shocks, while

the control signal represents shocks for which there is data on how they vary with

actions and outcomes.

The idea will be that our decision maker learns the realization of the circum-

stance variable s and the control variable z, before choosing an action x resulting

in a distribution over the outcome variable y. The payoff of the decision maker

(henceforth DM) is defined over the circumstance, action and outcome variables

by utility function u : Y ×X × S → R. In examples, when a variable only takes
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on a single value we suppress that variable in notation.

Throughout this paper, given a variable space V when we say a distribution

admits a density we assume that this is with respect to the same σ-finite product

measure. In all examples in this paper this will either be the counting measure for

the finite case or Lebesgue measure for the continuum case. The causal structure

between the variables is represented by the graph in Figure 2. The control and

circumstance variables affect the action variable, and in turn the control and action

variables affect the outcome variable.

s x y

z

Figure 1: Causal Structure

The DM wants to form the conditional distribution p(y|x, z). Doing this, they

can calculate their objective expected utility:

U(x, z, s) ≡
∫
Y

u(y, x, s)p(y|x, z)dµ(y) (1)

Throughout the paper we treat choosing actions to maximize this expression as

the normative benchmark. Let σ : Z × S → ∆(X) denote a strategy mapping.

Assume the exogenous joint distribution over controls and circumstances is full

support and admits a density p(z, s). Then given any Borel Set X ∈ B(X), we

can write a strategy mapping conditional only on z.

σ(X|z) =
∫
S

σ(X|z, s)p(s)dµ(s) (2)

Denote any Borel subset of the variable space by W ≡ Y × X × Z ∈ B(Y )×

B(X) × B(Z)3. Let P (·;σ) ∈ ∆(V ) be the objective distribution over the vari-

ables. Using the causal structure, the joint distribution over outcomes, actions

3Since the variable spaces are subsets of R and therefore second countable, the Borel product
σ-algebra is equal to the product of the Borel σ-algebra for each dimension.
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and controls can be written as follows.

P (Y ,X ,Z;σ) =

∫
Y×Z

[

∫
X
p(y|x, z)dσ(x|z)]p(z)dµ(z, y) (3)

2.1 Proxy variables

In order to form beliefs about the distribution of outcomes conditional on a given

action being taken when a given control is realized, the DM needs to have infor-

mation on the joint distribution of (y, x, z). We assume that the DM can only

access the joint distribution over proxies for these variables. Each of the three

variables has a respective proxy that can take any of the values the variable it is a

proxy for can take. We denote a realization of the proxy for the outcome, action

and control by (y•, x•, z•) ∈ Y ×X × Z respectively. We define a proxy mapping

π : Y ×X×Z → ∆(Y ×X×Z) that induces a distribution over the proxies for any

realization of the true variables. For any Borel subset W ∈ B(Y )×B(X)×B(Z),

the induced distribution over proxy variables is then:

Pπ(W ;σ) =

∫
Y×X×Z

π(W|y, x, z)dP (y, x, z;σ) (4)

Assume that the proxy mapping and strategy are such that the induced dis-

tribution over proxies Pπ admits a density pπ. In order to form beliefs about

how their action affects the distribution over outcomes, the DM needs to form

conditional beliefs:

pπ(y
•|x•, z•;σ) =

pπ(y
•, x•, z•, ;σ)

pπ(x•, z•;σ)
(5)

Given the distorted belief distribution, the agent in circumstance s with control z

chooses an action x to maximize the perceived utility given below.

V (x, z, s;σ) =

∫
Y •

u(y = y•, x, s)pπ(y
•|x• = x, z• = z;σ)µ(y•) (6)
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2.1.1 The proxy mapping

Consider that i is any of the three variables, and that we can denote a realization

of the true variable by vi and a realization of the proxy by v•i . It is possible

that a proxy is a perfect measure for the underlying true variable, v•i = vi almost

everywhere for some variable(s) i. Indeed, for all the applications in this paper

some of the variables are perfectly observed. In the case where v•i ̸= vi with

nonzero probability, we say that i• is a mismeasurement of i. In examples, for

simplicity we generally avoid drawing a distinction between the true and proxy

variable when the proxy is a perfect measurement.

A proxy mapping that induces an identical joint distribution over the proxy

variables and the true variables —for any initial distribution of the true variables—

is called the perfect measurement mapping. Throughout the paper, we say that

the beliefs induced by the perfect measurement mapping comprise the rational

expectations benchmark or induce correct beliefs. In the absence of a knowledge

of the true relationship between variables a rational bayesian DM would have to

form a prior belief about how the proxies and the true variables relate. From a

normative perspective it is unclear how such a belief should be formed.

In our examples, we illustrate the causal dependencies between the variables

by Directed Acyclic Graphs (DAGs). In these graphs, a link → between two

variables indicates that the variable being pointed to is independent of all other

variables conditional on the variables that point into it. DAGs are used to model

causal misperceptions in the related concept of Spiegler (2016), and we discuss the

relationship between the two concepts further in Section 6.2.

2.2 Equilibrium

We see how the decision maker’s strategy can affect expectations by considering

the case where all variables are finite. For any proxy mapping π we can write the

perceived conditional distribution as follows.

pπ(y
•|x•, z•;σ) =

∑
y,x,z π(y

•, x•, z•|y, x, z)p(y|x, z)σ(x|z)p(z)∑
y•,y,x,z π(y

•, x•, z•|y, x, z)p(y|x, z)σ(x|z)p(z)
(7)
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We illustrate the dependence of this distribution on the strategy σ(x|z) using

the following binary version of the policing example previewed in the introduction.

Example 1. A municipal leader learns the realization of a circumstance variable

s determining whether the cost of crime is high s = s̄ or low s = s < s̄, before

choosing whether to hire more police officers x = 1 or not x = 0. The hiring of

police officers in turn affects whether crime is high y = 1 or low y = 0.

Let the relationship between the policing variables and the crime variable be

given by p(y = 1|x) = βx+(1−β)(1−x) where β ∈ (0, 1
2
). The prior distribution

over the cost of crime variable is p(s̄) = 1
2
. We assume the crime variable y is

perfectly measured, but the policing variable x is potentially not. We can write

the simplest form of measurement error in the policing variable using the proxy

mapping πx(x
• = x|x) = λ where λ ∈ (1

2
, 1]. As λ → 1 we have close to perfect

measurement.

Denote the ex-ante strategy as σ(1) = 1
2
σ(1|s̄) + 1

2
σ(1|s). The perceived condi-

tional distribution is then:

pπ(y
• = 1|x• = 1;σ) =

σ(1)λβ + σ(0)(1− λ)(1− β)

σ(1)λ+ σ(0)(1− λ)
(8)

This expression is clearly not invariant to the strategy. For example if σ(1) =

σ(0) it is equal to λβ + (1 − λ)(1 − β) while if σ(1) = 1 and σ(0) = 0 it is equal

to β.

Thus, in general to characterize the DM’s choices we need to define an equi-

librium concept in order to establish consistency between strategies and beliefs.

To ensure that conditional distributions are well defined we first define an equi-

librium with a small trembling probability and then define an equilibrium as the

limit when this probability goes to zero.

We make the following technical definitions to facilitate the description of

Proxy Equilibrium. We say a sequence of strategies {σ}∞j=1 converges to strategy

σ̄ if for every (z, s) ∈ Z × S the sequence of probability measures {σ(.|z, s)}∞j=1

converges in distribution to the probability measure σ̄(.|z, s). A strategy σ in-
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duces full support if it induces a belief density such that pπ(x
•, z•;σ) > 0 for any

realization (x•, z•) ∈ X × Z.

Definition 1. Let σ∗
ϵ be a strategy mapping that induces full support. For every

s ∈ S, z ∈ Z, define the following set:

X(z, s;σ∗
ϵ ) ≡

{x ∈ X : x /∈ argmax

∫
Y •

u(y = y•, x, s)pπ(y
•|x• = x, z• = z;σ∗

ϵ )dµ(y
•)}

Then σ∗
ϵ is an ϵ-Proxy Equilibrium if for every Borel subset I ∈ B(X), I ⊆

X(z, s;σ∗
ϵ ), we have that σ∗

ϵ (I|z, s) < ϵ.

Definition 2. A strategy σ∗ is an Proxy Equilibrium if there exists a sequence

{σ∗
l }∞l=1 converging to σ∗ as well as a sequence ϵl → 0, such that for every l, σ∗

l is

an ϵl-Proxy Equilibrium.

The definition ensures that action-control-circumstance combinations that are

not in the best response correspondence must have vanishing probability under the

equilibrium strategy. Note that it is a requirement of the definition of an ϵ-Proxy

Equilibrium for the equilibrium strategy to induce a distribution over proxies that

admits a density.

When the variable space is finite and the proxy mapping satisfies a minimal

responsiveness condition, we can show the existence of at least one Proxy Equi-

librium using conventional methods. A proxy mapping π is minimally responsive

if whenever the conditional-on-z strategy mapping admits a density and is full

support: supp{σ(.|z)} = X for all z ∈ Z; then we have pπ(x
•, z•;σ) > 0 for any

realization (x•, z•).

Proposition 1. Assume the set V is finite and the proxy mapping π is minimally

responsive. Then a Proxy Equilibrium exists.

Proof. In Appendix
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2.3 Imperfect observations of actions

The formalism allows the DM to have imperfect equilibrium knowledge of their

own distribution of actions. This is motivated by a population level interpretation,

where the dataset the DM is using to form beliefs is generated by other DMs facing

the same or similar decision problems. The DM’s own record of past actions only

makes up a negligible part of this dataset. For example, a DM in a particular city

may draw inference from a national level dataset when inferring the effect of a

policy action on an outcome.

This allowance differs from the requirement of knowledge of the distribution of

own actions in other solution concepts in the literature, such as Berk-Nash Equi-

librium (Esponda and Pouzo, 2016) or Self-Confirming Equilibrium (Fudenberg

and Levine, 1993). We discuss the substantive difference this can make in Section

6.

3 An illustrative example: Rigid Policing

In this example we consider the leader of a municipal authority, who has to make

a decision on the number of police officers to hire. The municipal leader wants to

hire police officers in order to reduce crime. We assume that there is noise in the

measured variable for police numbers. Concern about measurement error in police

staffing figures is not unprecedented. It is argued by Chalfin and McCrary (2018)

that based on discrepancies between official data and administrative and census

information there is significant measurement error in police staffing numbers in

the literature estimating the effect of police numbers on crime. For expositional

purposes, we assume that the crime variable is measured perfectly. This turns out

not to make a difference to the equilibria that we characterize.

The structure of the problem facing the municipal leader is as follows, first they

learn the realization of a variable affecting the cost of crime in their municipality

s. This is assumed to be distributed normally in the population of municipalities

used in the dataset under consideration, s ∼ N (0, σ2
s). The municipal leader then

11



chooses the change in the number of police officers. This affects the change in

crime observed under their leadership via the relationship y = α− βx+ u, where

u ∼ N (0, σ2
u) and β > 0. In the available data, it is assumed that changes in police

numbers are measured as x• = x+ϵ, where ϵ is normally distributed measurement

error ϵ ∼ N (0, σ2
ϵ ). The relationship between the variables can be characterized

by the DAG in Figure 2.

s x y

x•

Figure 2: Crime and Policing

The utility function of the municipal leader trades-off crime and policing costs.

Higher s is assumed to reflect higher costs of crime relative to altering police

numbers. We assume a symmetric cost of hiring and firing police officers. An

alternative interpretation is that all the variables are in logs of the levels.

u(y, x, s) = −s · y − 1

2
x2 (9)

Denote the rational expectations benchmark for how policing affects crime

levels in expectation by E[y|x] = f(x) = α−βx. We can see that by plugging this

into the utility function and calculating the best response that the optimal strategy

under rational expectations for the municipal leader is to set police numbers such

that x∗(s) = βs. Thus the rational expectations benchmark is for police numbers

to be increased by more when the costs of crime is larger (higher s) and the effect

of police numbers on crime is greater (higher |β|). Define a linear equilibrium as

an equilibrium in which the strategy of the policy maker can be expressed as a

linear function of the cost variable, x(s) = θ0+ θ1s for some (θ0, θ1) ∈ R2. We can

characterize all the linear equilibria of the model as follows.

Proposition 2. There is always a linear equilibrium in which the municipal leader

never changes police numbers, with best response xnv(s) = 0.
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In addition, if |β| ≥ 2σϵ

σs
, then there exist two additional linear equilibria, with

best response x−(s) = (1
2
β − 1

2

√
β2 − 4σ2

ϵ

σ2
s
)s and x+(s) = (1

2
β + 1

2

√
β2 − 4σ2

ϵ

σ2
s
)s.

There are no other linear equilibria.

Proof. In Appendix

Due to the measurement error in the police numbers proxy, there is generally

downward attenuation bias in the municipal leader’s estimate of the expected

change in the level of crime for any given change in police numbers. However,

when there is more variation in police staffing numbers the measurement error is

a smaller fraction of the total variance of the proxy. This means the downward

attenuation effect is lessened compared to when there is little or no variation in true

police staffing numbers. This effect generates potential multiplicity of equilibria.

We illustrate the solution method and equilibria in Figure 3 below. We have

the following expression for the marginal effect of increasing police numbers, given

the expectations induced by the strategy x(s) = θ1 · s:

−∂E[y•|x•]

∂x• =
βθ21σ

2
2

θ21σ
2
2 + σ2

ϵ

= g(θ1; (β, σs, σϵ)) (10)

An equilibrium best response has to be such that θ1 = g(θ1; (β, σs, σϵ)). The

figure below shows how this equation characterises the equilibria for two different

parameter sets. We have a case in which the only equilibrium is the no variation

equilibrium and a case in which all three equilibria exist.

Adding normally distributed measurement error to the crime variable, so that

y• = y + v with v ∼ N (0, σ2
v), does not change either the set of Proxy Equilibria

nor does it change the rational expectations benchmark. That the rational ex-

pectations benchmark is unchanged is easy to see due to linearity of expectations.

The proxy-equilibrium case is due to both the linearity of the conditional expec-

tation and the fact that the additional variance in y• does not affect the marginal

perceived incentive over the policing variable.

One of the equilibria has the municipalities not varying police numbers at

all, regardless of how great the effect of policing on crime is. This extreme, no
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Figure 3: Best response quadratic

variation equilibrium exists for any small amount of measurement error in the

proxy σ2
ϵ > 0 no matter how close to zero. In this equilibrium, there is no variation

in the true policing variable. Therefore even arbitrarily small noise dominates the

observations of the proxies for all non-zero policing choices. This results in massive

attenuation bias, so that altering police numbers appears completely ineffective at

affecting crime, reinforcing that municipalities do not alter police numbers.

In all linear Proxy Equilibria, the policy chosen is more rigid than the rational

benchmark. The rigidity results solely from bias beliefs due to measurement noise,

and as discussed above extreme rigidity can coincide with very small noise. Ap-

parent over-rigidity in choices has been discussed in relation to monetary policy

Tetlow and Von zur Muehlen (2001) and firm pricing Nakamura and Steinsson

(2013). It is possible that this example could be extended into a more compli-

cated model that could provide an alternative explanation of these phenomena as

resulting from use of mismeasured data from decision makers.

4 Market Entry: Endogenous Overoptimism

Businesses entering into new markets have high rates of failure. Using data from

the US Census Bureau Haltiwanger (2015) calculates that half of new firms exit the
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market within 5 years. In UK data, 38 percent of enterprises newly born in 2016

survived 5 years4. A literature in business and economics attributes these seem-

ingly excessive levels of market entry to overoptimism on the part of the potential

market entrants, see Hayward et al. (2006), Cooper et al. (1988), Malmendier and

Tate (2005).

We build an application of our solution concept that generates firms that have

an upwardly biased assessment of the payoffs from entering new markets as a

feature of equilibrium. Firms draw on noisily recorded data drawn from past

entrants. There is a variable z ∈ [0, 1] ≡ Z, representing the location of markets in

some space, which could be geographical or based on demographic information. We

assume that the circumstance signal only takes on a single value, and can therefore

be ignored in our analysis. This means that all variation in action choice in

equilibrium is driven by differences in the perceived impact of actions on outcomes.

After learning the realization of this variable, the potential market entrant has to

make a binary decision on whether to enter x = 1 or not x = 0. The payoff

of the entrant is measured via an outcome variable y ∈ R ≡ Y representing the

profitability of the enterprise, so that u(y, x, s) = y. The outcome variable is

determined by both the entry decision and the market location variable by the

following relationship.

E[y|x, z] =
∫
Y

yp(y|x, z)dµ(y) =


m(z) if x = 1

0 if x = 0

(11)

We assume that the function m : Z → R is strictly increasing, bounded and

right-continuous, with a single point of crossing α ∈ [0, 1] such that m(z) < 0 for

all z ∈ [0, α) and m(z) ≥ 0 for z ∈ [α, 1]. Thus for high enough realizations of

the market location variable, the expected profitability of entry is always greater

than the payoff of zero from not entering. We assume the potential entrant does

not have data on how the market location z varies with the outcome and action

variable, but instead has access to a noisy recorded proxy variable z•. The idea

4This statistic is from Office for National Statistics (2022).
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is that each market has a very granular definition, and in data it can only be

recorded in an imprecise fashion. This could be due to data protection reasons

when z is demographic information, for example.

Thus we assume the proxy variable is generated by a mapping that has the

following ‘window’ form. There is some parameter h ∈ (0, 1
2
) such that for every

z ∈ [h, 1 − h] we have that z• is uniformly distributed on [z − h, z + h]. For all

z ∈ [0, h) we have that z• is distributed uniformly on [0, 2h) and for all z ∈ (1−h, 1]

we have that z• is distributed uniformly on z ∈ (1 − 2h, 1]. This window form

of proxy noise is similar to the notion of similarity used in Steiner and Stewart’s

(2008) model of learning in games. The conditional independence relationships

between the true variables and the proxy are illustrated in the DAG below.

z

x

yz•

Figure 4: Market Entry

Under rational expectations the best response of the potential entrant is clear;

when z ∈ [0, α) x = 0 is optimal while for z ∈ [α, 1] the payoff from entering is

weakly above zero and therefore optimal. We are going to see that in equilibrium,

there is over-entry. Since in the equilibrium data there is negligible observations of

entrants below a certain market location, the proxy observations for these markets

are disproportionately higher location markets that have been misclassified as

lower ones. This leads to an overestimate of the payoff from entering at these

lower levels. However, enough over-entry reduces the extent of this proxy bias

and in equilibrium the DM is indifferent between entering or not at some cut-off

z̄ below the cut-off they would enter at under rational expectations.

Given an induced perceived distribution over the outcome variable pπ(y|x, z•),
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we give an expression for the perceived expected utility below.

V (x = 1, z;σ) =

∫
Y

ypπ(y|x = 1, z• = z;σ)dµ(y)

=

∫
Y

y[

∫
Z

p(y|x = 1, z̃)pπ(z̃|x = 1, z• = z;σ)dµ(z̃)]dµ(y)

=

∫
Z

[

∫
Y

yp(y|x = 1, z̃)dµ(y)]pπ(z̃|x = 1, z• = z;σ)dµ(z̃)

=

∫
Z

m(z̃)pπ(z̃|x = 1, z• = z;σ)dµ(z̃) (12)

The perceived utility of x = 0 at z is always zero; V (x = 0, z;σ) = 0. We

can see that the perceived utility depends on the distribution pπ(z̃|x = 1, z• =

z;σ) induced by the strategy σ. Given the distribution over proxies, this can be

calculated as follows.

pπ(z|x = 1, z•;σ) =
π(z•|z)σ(x = 1|z)p(z)∫

Z
π(z•|ẑ)σ(x = 1|ẑ)p(ẑ)dµ(ẑ)

=
1[z∈[max{z•−h,0},min{z•+h,1}]p(z)σ(x = 1|z)∫ min{z•+h,1}

max{z•−h,0} p(ẑ)σ(x = 1|ẑ)dµ(ẑ)
(13)

The following result shows both that Proxy Equilibria exist in this setting

and that any Proxy Equilibrium with entry will take a cut-off form. We assume

h < min{α
2
, 1−α

2
}. This ensures h is small enough so that that the firm will not

enter at low values of z and there is always an equilibrium in which the firm will

enter at high values of z. The absence of this requirement on bandwidth parameter

h complicates the analysis by requiring us to consider additional cases, but does

not create a fundamental difference in that we can regard these cases as cut-off

equilibria with cut-off points at the boundary.

Proposition 3. Assume h < min{α
2
, 1−α

2
}. Then there is a cut-off z̄ ∈ [h, 1− h]

such that there is a Proxy Equilibrium with strategy σ(x = 1|z) = 0 for z ∈ [0, z̄]

and σ(x = 1|z) = 1 for z ∈ (z̄, 1].

This cut-off is always strictly less than the rational entry point; z < α.

In addition, there is always a Proxy Equilibrium where σ(x = 1|z) = 0 for all
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z ∈ [0, 1].

There are no other Proxy Equilibria.

Proof. In Appendix

In the next result we see that noisier proxies —in the form of higher h— always

lead to greater levels of excessive entry.

Proposition 4. Consider two noise parameters min{α
2
, 1−α

2
} > h2 > h1 > 0. We

have that the cut-off z̄(h2) under the positive entry Proxy Equilibrium with noise

parameter h2 is strictly less that the cut-off z̄(h1) under h1.

Proof. In Appendix

The intuition for this result is as follows. In general —for a fixed belief distri-

bution— it is ambiguous whether larger h increases or decreases the payoff from

entry at any given z. However, in equilibrium what matters is the beliefs at the

pivotal cut-off z̄. At the cut-off the DM must be indifferent between entering and

not. An increase in h will always lead to greater weight on the part of the function

m(z) that is above the cut-off, in particular greater weight on the positive part

of m(z). This pushes up the expected payoff from entering strictly above zero at

this cut-off, and the new cut-off at the larger h must be below in order to restore

indifference.

As a corollary to Proposition 3 and 4, we have that as h → 0, the cut-off

equilibria converges to the rational entry strategy. This is because z̄(h) < α and

z̄(h) is strictly decreasing in h.

Corollary 4.1. Consider any sequence of bandwidth parameters {hl}∞l=1, such that

0 < hl < min{α
2
, 1−α

2
} for all l and hl → 0. Then the corresponding sequence of

Proxy Equilibrium cut-offs {z̄(hl)}∞l=1 is such that z̄(hl) → α from below.

The equilibrium requirement is vital for Proposition 4. In an alternative model

where the distribution p(z) is exogenous, we can construct cases in which entry is

both excessive and increasing h results in firms choosing to enter at fewer signals.

This is because against a fixed distribution increasing h also increases the weight
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placed on the negative part of the m(.), and this can dominate the increasing

weight placed on the positive part depending on the shape of m(.). We present

an example where this is the case in Appendix A.1.

5 Almost Perfect Proxies

In this section we characterize the set of all strategies that can arise as Proxy

Equilibria even as the variables are arbitrarily close to being perfectly measured.

We call these strategies Self-Confirming Optimal. These strategies are optimal

against any perceived beliefs that are correct ‘on-path’. That is to say, correct

for actions-control signal combinations that occur with positive probability under

the strategy itself. If a strategy is in the set, then we can choose a particular

proxy mapping that implements that strategy as an equilibrium. If a strategy

does not meet the conditions to be Self-Confirming Optimal, then it cannot be

implemented as a Proxy Equilibrium for any proxy mapping that is above a certain

level of proximity to perfect measurement.

5.1 Definition of almost perfect proxies

We use the following concept of statistical distance to define a notion of proxim-

ity of the proxy variables to perfect measurement. The total variation distance

between probability measures Q1 and Q2 on measure space (Ω,A) is:

TV (Q1, Q2) = sup
A∈A

|Q1(A)−Q2(A)| (14)

Denote w = (y, x, z) and define the perfect measurement proxy mapping as πδ : Y ×

X×Z → ∆(Y ×X×Z) such that Pπ(W ) =
∫
Y×X×Z

πδ(W
• = W |w)p(w)dµ(w) =

P (W ) for every Borel set W ∈ B(Y ) × B(X) × B(Z) and any P . We then have

the following definition.

Definition 3. Given η > 0, we say the proxy distortion mapping π is strongly
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η-close to perfect if:

sup
w∈Y×X×Z

TV (π(.|w), πδ(.|w)) < η (15)

In addition, we give the following requirement for a distribution over Y ×X×Z

to have full support.

Definition 4. A distribution G over variables in Y ×X × Z is said to have full

support if it admits a density g(ỹ, x̃, z̃) such that g(x̃, z̃) > 0 for every realization

(x̃, z̃) ∈ X × Z.

We state a result demonstrating why our notion of proximity is suitable for the

Proxy Equilibrium setting. It shows that if the joint density over the true vari-

ables satisfies the full support requirement, then beliefs become arbitrarily close to

rational expectations as the proxy variables become close to perfect measurements

in the total variation distance. This may not hold for alternative distance require-

ments, such as weak convergence, which do not ensure that densities converge

even as the distribution does.

The result concerns potentially out of equilibrium beliefs, and can be used as

a diagnostic when considering equilibria in which full-support does not hold. For

example, in our policing application the full-support assumption does not always

hold and therefore we can have large belief distortions even as the proxy noise is

close to zero.

To show the connection to the policing example, we give the following weaker

definition of almost perfect proxies. It requires proximity to perfect measurement

only for a fixed distribution over the true variables. In the appendix, we show

that the stronger definition implies the weak definition holds for any distribution

over the true variables.

Definition 5. Given η > 0, we say the proxy mapping π is η-close to perfect given

the distribution over true variables P if:

TV (P, Pπ) < η (16)
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The full support requirement rules out zero probability events in the denomi-

nator of conditional probabilities, which then ensures the convergence of the joint

distribution is passed through into the conditional density. We can then show that

a continuity property holds for the perceived conditional distribution of y given

(x, z).

Proposition 5. Assume the full support assumption holds for the true dis-

tribution P .

Then for µ almost every (y, x, z) ∈ Y × X × Z, for any ϵ > 0, there exists

an η > 0 such that if the proxy mapping π is η-close to perfect given true

distribution P and induces a distribution over the proxy variables that satisfies the

full support assumption, then |pπ(y• = y|x• = x, z• = z)− p(y|x, z)| < ϵ.

Proof. In Appendix

It is clear that the policing example does not satisfy the full support require-

ment when the no variation equilibrium strategy is played. However, in the cases

where full support holds then Proposition 5 holds and we have beliefs that are close

to rational expectations for proxies that are close enough to perfect measurements.

We can use the Hellinger distance, convergence in which implies convergence in

the Total Variation distance, to derive an expression for the distance between

any joint gaussian for proxies and true variables. For example, we can obtain

an expression for the square of the Hellinger distance between the distribution

for the policing variable and its proxy, which are distributed x ∼ N (µx, σ
2
x) and

x• ∼ N (µx, σ
2
x + σ2

ϵ ) respectively.

H2(P x
π , P

x) = 1−

√
2σx

√
σ2
x + σ2

ϵ

2σ2
x + σ2

ϵ

(17)

We can then see that as σϵ → 0 we can make the two distributions arbitrarily

close and thus satisfy our requirements for Proposition 5.
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5.2 Characterization result

We define the conditions required for a strategy to be Self-Confirming Optimal

below. The definition requires that the strategy meets different conditions for

actions that are in the support of the strategy and actions that are not. Recall

that σ(.|z) is the conditional on z strategy obtained from the full strategy σ(.|z, s)

by (2). Define a system of beliefs as a collection of conditional distributions q :

X × Z → ∆(Y ), q = {q(.|x, z)}(x,z)∈X×Z .

Definition 6. Let Y × X × Z × S be finite. A strategy σ∗ : Z × S → ∆(X) is

Self-Confirming Optimal if there exists a system of beliefs q such that:

1. The beliefs are correct for actions and signals that arise with positive prob-

ability under σ∗. At every (x, z) such that x ∈ supp{σ∗(.|z)}, we have

q(y|x, z) = p(y|x, z) for all y ∈ Y .

2. The strategy σ∗ is optimal given beliefs q. At every (z, s) ∈ Z × S, for any

x ∈ σ∗(.|z, s) and x′ ∈ X we have that:

∑
y∈Y

u(y, x, s)q(y|x, z) ≥
∑
y∈Y

u(y, x′, s)q(y|x′, z) (18)

If there exists q such that the first condition holds and (18) always holds strictly,

we say that σ∗ is strictly Self-Confirming Optimal.

The strength of this condition varies with the utility function. If payoffs are

such every action is a best response for some circumstance signal regardless of

beliefs, then only the strategies that are optimal against the true conditional

distribution are Self-Confirming Optimal. If any action can be sub-optimal at

all signals for some beliefs, then the condition is very permissive. We have the

following result.

Proposition 6. Let Y ×X × Z × S be finite. Then for any η > 0, σ∗ : Z × S →

∆(X) is a Proxy Equilibrium under some proxy mapping that is strongly η-close

to perfect if and only if it is a Self-Confirming Optimal strategy.
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Moreover, if σ∗ is strictly Self-Confirming Optimal and supp{p(y|x, z)} =

Y for all (x, z) ∈ X×Z, we can always construct the Proxy Mapping under which

σ∗ is a Proxy Equilibrium such that the outcome variable is perfectly measured.

Proof. In Appendix

The sufficiency part of the result is proven by constructing a proxy mapping

that has a small probability of randomly allocating a particular realization of the

true outcome vector to the proxy of an action-control combination that has zero

probability under the proposed equilibrium strategy. The particular outcome vec-

tor is chosen so as to deter the DM from choosing that particular zero-probability

action-control combination. The necessity part follows from a stronger version

of Proposition 5, that we have convergence of beliefs to rational expectations for

‘on-path’ actions if the proxy mapping converges to perfect measurement.

We can apply this result to our binary policing example from Section 2.2 to

analyze what strategies can arise as Proxy Equilibria for arbitrarily small mea-

surement noise.

Example 1 (Continued). Let the payoff function of the DM be:

u(y, x, s) = s(1− y)− x(1− s)

Assume that s = 0 and s̄ > 0. Then we have σ(0|s) = 1 in any Proxy Equilibrium.

This is because at s = 0 it is a best response regardless of the beliefs of the DM

about how x covaries with y.

There are three cases at which different strategies are Self-Confirming Optimal.

1. If s̄ ∈ [0, 1
2(1−β)

) then we must have σ(0|s̄) = 1 in any Self-Confirming

Optimal strategy. This is because at s = s̄ the following inequality must hold

for x = 1 to be a best response.

s̄(2− pπ(y = 1|x• = 1))− 1 ≥ s̄(1− pπ(y = 1|x• = 0)) (19)
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A strategy in which x = 1 is chosen with positive probability at s̄ is one

in σ(0) > 0, σ(1) > 0. Self-Confirming Optimality then requires that both

actions are optimal against a system of beliefs that is correct. Since σ(1) > 0

is not if s̄ ∈ [0, 1
2(1−β)

), we have our claim.

2. If s̄ ∈ ( 1
1−β

,∞) then it must be the case that σ(1|s̄) = 1. Since σ(1|s) = 0

always, we must have Self-Confirming Optimality with respect to a system

of beliefs for which pπ(y = 1|x• = 0) = 1− β. Optimality of x = 0 at s = s̄

then requires that for some beliefs pπ(y = 1|x• = 1) ∈ [0, 1]:

s̄β ≥ s̄(2− pπ(y = 1|x• = 1))− 1 (20)

This is violated for any such beliefs if s̄ > 1
1−β

.

3. If s̄ ∈ [ 1
2(1−β)

, 1
1−β

], then strategies in which σ(1|s̄) = 1, σ(1|s) = 0 or

σ(0|s) = 1 for all s are both Self-Confirming Optimal. The first type of

strategy can be implemented by the perfect measurement mapping, which is

trivially arbitrarily close to perfect measurement. When s̄ ∈ ( 1
2(1−β)

, 1
1−β

), the

second type of strategy can be implemented by the following proxy mapping,

which has perfect measurement of the outcome:

π(y• = y, x• = x|y, x) = 1− η + η(1− y)

π(y• = y, x• ̸= x|y, x) = ηy (21)

This results in beliefs such that pπ(y = 1|x• = 1) = 1 and pπ(y = 1|x• =

0) → 1 − β as η > 0 tends to zero. This can then sustain the proposed

strategy as a proxy equilibrium as it satisfies inequality (20) for s̄ ∈ [0, 1
1−β

).

When s̄ = 1
1−β

we can implement the strategy with a proxy mapping that has

imperfect measurement of the outcome variable.

π(y•, x•|y, x) = (1− η)1[y• = y, x• = x] + η
1

2
(x+ (1− x)(1− β))
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This mapping induces the exact beliefs pπ(y
• = 1|x• = 1) = 1 and pπ(y

• =

1|x• = 0) = 1− β.

6 Related Literature

6.1 Relationship to Berk-Nash Equilibrium

The Berk-Nash Equilibrium of Esponda and Pouzo (2016) gives a general solution

concept for games in which players have to form expectations of a mapping between

actions, a signal variable and outcome variables that may depend on the actions

and signals of multiple players. Each player has a set of subjective models over

this mapping. Under the solution concept the expectations of the players have

to be such that any subjective model that is in the support of expectation of the

player minimizes the Kullback-Leibler divergence between the true distribution

over outcomes and that projected by the model, weighted by that player’s signal

and action probabilities. This is then founded as the limit of a Bayesian learning

process in which the players have a prior with their set of subjective models as the

support. The true model that generates the mapping between the action, signal

and outcome variables may not be in the set of subjective models and thus players

may have misspecified expectations.

In general Proxy Equilibrium cannot be nested as a special case of Berk-Nash

Equilibrium. The ‘false’ action, signal and outcome variables under Proxy Equi-

librium are not compatible with the assumption that players perfectly observe the

joint distribution of their signals, actions and outcomes in Berk-Nash Equilibrium.

If these feedback variables are imperfectly measured, any set of subjective models

cannot contain models that put probability one on the proxies being identical to

the true variables. This is because the Kullback-Leibler divergence is not well

defined for that model, as it would place zero probability on the event that the

proxies and true variable realizations differ even though they differ with positive

probability.
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6.2 Relationship to Bayesian Network Equilibrium

Another related concept is the Bayesian Network Equilibrium of Spiegler (2016).

In Spiegler (2016) the relationship between variables is modelled using Directed

Acyclic Graphs (henceforth DAGs). Under the concept a DM can have a incorrect

understanding of the causal relationships between the variables. The DM fits a

potentially misspecified DAG to the variables in way that can distort beliefs and

lead to equilibrium effects.

Bayesian Network Equilibrium can be formulated as a special case of Berk-

Nash Equilibrium. Hence Proxy Equilibrium is not a special case for the same

reasons as it cannot be nested as a Berk-Nash Equilibrium. Conceptually, the idea

behind Proxy Equilibrium is that the simple causal structure between the variables

is understood by the DM, but the DM either neglects or does not realize there are

measurement problems with the variables. Bayesian Network Equilibrium instead

considers cases where the DM misunderstands the causal structure, and fits the

incorrect causal structure to variables that are otherwise perfectly measured.

6.3 Relationship to Self-Confirming Equilibrium

Self-Confirming Equilibrium (SCE) originates from work by Fudenberg and Levine

(1993), Battigalli (1987). Under this concept players in a game only receive lim-

ited feedback on the equilibrium actions of other players and nature. In recent

formulations of SCE (Battigalli et al., 2015), (Battigalli et al., 2019) there is a

feedback function from true variables into a message space, with player’s only

observing the equilibrium distribution of messages.

Using the formulation of SCE in Esponda and Pouzo (2016), we see that the

same distinction between Berk-Nash Equilibrium and Proxy Equilbrium arising

from lack of knowledge of the equilibrium joint distribution of actions, signals

and outcomes also holds for this version of SCE. However the most important

difference is that SCE allows any belief consistent with the feedback. If we view the

distribution of proxies as the feedback, Proxy Equilibrium selects a unique belief

from those consistent, rather than allowing any consistent belief. For versions
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of SCE that allow feedback that is limited enough to be consistent with Proxy

Equilibrium, this difference is enlarged as SCE then also allows an even greater

set of consistent beliefs.

6.4 Other Related Literature

The strand of literature that this paper is most clearly related to is that on equi-

librium solution concepts with bounded rational expectations. The work on using

Bayesian Networks as a formalism to model causal misperceptions originating from

Spiegler (2016) has been developed to explore interactive beliefs in games (Spiegler,

2021); political narratives (Eliaz and Spiegler, 2020), (Eliaz et al., 2022); persua-

sion (Eliaz et al., 2021); contract theory (Schumacher and Thysen, 2022) and

deception (Spiegler, 2020). Other solution concepts in this tradition include the

Cursed Equilibrium of Eyster and Rabin (2005), the Behavioural Equilibrium of

Esponda (2008) and the Analogy Based Expectation Equilibrium of Jehiel (2005),

Jehiel and Koessler (2008).

The Berk-Nash equilibrium of Esponda and Pouzo (2016) supplies a framework

that nests many of these concepts and provides a foundation in the literature on

dynamic misspecified learning. Papers in the broader misspecified learning litera-

ture have explored overconfidence about one’s ability; Heidhues et al. (2018), social

learning; Bohren and Hauser (2021) and connections to Berk-Nash Equilibrium;

Fudenberg et al. (2021). In particular, the work of Frick et al. (2020) on fragile

social learning has a similar flavour to our paper. They show that arbitrarily small

misperceptions about the distribution of other player’s types can generate large

breakdowns in information aggregation, similar to our results on arbitrarily small

imperfections in proxies leading to large distortions in beliefs.

We can see this solution concept literature as modelling players whose actions

contribute to an long-run steady state distribution of the outcomes of past deci-

sions in the same or similar situations. In contrast, there is a literature modelling

players in games as extrapolating from small samples of the equilibrium behaviour

of other players, the seminal work being Osborne and Rubinstein (1998) and Os-
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borne and Rubinstein (2003). Several recent papers developing similar ideas in-

clude Salant and Cherry (2020), Patil and Salant (2020) and Gonçalves (2022).

This paper also connects to a body of work on naive inference from selected

observations as a form of decision making bias. This models of sampling in-

vestors in Jehiel (2018) and elections with retrospective voters in Esponda and

Pouzo (2017). Spiegler (2017) explores a procedure in which an analyst extrapo-

lates from a dataset with partially missing information. Fudenberg et al. (2022)

presents an equilibrium concept in which agents have selective recollection of their

past experience. In all of these works, agents are considering a partially miss-

ing distribution. Under Proxy Equilibrium, data is not fully missing but instead

distorted by measurement error.

Finally, there is a link between this paper and the literature on overconfidence

in the sense of over-precision as discussed in Moore and Healy (2008). As in the

case of over-precision, in Proxy Equilibrium agents underestimate the extent of

the divergence of observable variables from true variables. The size of the overcon-

fidence literature makes it impossible to cover fully here, but examples modelling

over-precision specifically include applications to political ideology (Ortoleva and

Snowberg, 2015), speculative bubbles in finance (Scheinkman and Xiong, 2003)

and volatility in securities markets (Daniel et al., 1998).

6.5 Proxy Equilibrium vs imperfect control

We explore a variant of Proxy Equilibrium under which the DM believes they have

imperfect control of the action that affects the outcome, even though they in fact

have perfect control. This variant is a Bayesian Network Equilibrium and thus

also a Berk-Nash Equilibrium. The differences between the equilibria possible

under this variant and under Proxy Equilibrium underlines that the allowance

for imperfect knowledge of the equilibrium distribution over actions discussed in

Section 2.3 can have substantive effects.

Let the variable space be finite and Z be a singleton. We will focus on proxy

mappings that induce perfect measurement over the outcome variable. Suppose
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that the DM had access to the joint distribution of the variables (y, x, x•), and fits

a DAG model x → x• → y to these variables as in Bayesian Network Equilibrium.

In the context of our policing example, under this variant the DM chooses a policy

action x which perfectly controls police numbers. However, they only has imper-

fectly measured data on police numbers and believe it is possible they exert im-

perfect control. Given an equilibrium strategy σ, denote σ(x) =
∑

s∈S σ(x|s)p(s).

The joint density of these variables is:

pπ(y, x
•, x) = p(y|x)σ(x)π(x•|y, x) (22)

Then the conditional beliefs formed under Bayesian Network Equilibrium are:

q̂(y|x) =
∑
x•∈X

pπ(y|x•)pπ(x
•|x) (23)

We must have that the following holds:

∑
x∈X

q̂(y|x)σ(x) =
∑
x•∈X

pπ(y|x•)
∑
x∈X

pπ(x
•|x)σ(x) =

∑
x•∈X

pπ(y, x
•)

=
∑
x•∈X

∑
x′∈X

π(x•|y, x)p(y|x′)σ(x′) =
∑
x′∈X

p(y|x′)σ(x′)

Thus any beliefs q̂ arising under our DAG model must satisfy the constraint∑
x∈X q̂(y|x)σ(x) =

∑
x′∈X p(y|x′)σ(x′). This can place a significant restriction

on conditional beliefs at any x for which σ(x) > 0. If there is only one action

in the support of the strategy, then this condition says that the DM must have

correct conditional beliefs for that action. In contrast, Proxy Equilibrium places

no such restriction.
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A Appendices

A.1 Market Entry without equilibrium

The following example demonstrates that without the equilibrium requirement,

against an exogenous distribution the extent of excessive entry can decrease with

the bandwith parameter.

Example 2. Let the function m(.) take the following form.

m(z) =


1
2
k

1−k(x−α)
− 1

2
k if z ∈ [0, α)

1
2
k+(x−α)

1−k(x−α)−(x−α)2
− 1

2
k if z ∈ [α, 1]

(24)

This function is increasing in the signal z and continuous. Assume the distri-

bution over controls p(z) is uniform and the conditional distribution p(.|z•, x = 1)

is set exogenously to that which would be induced by the strategy σ(x = 1|z) = 1

for all z. This means that p(.|z•, x = 1) is uniform in z ∈ [z• − h, z• + h] for each

z• ∈ [h, 1 − h] and uniform on z ∈ [0, h) and z ∈ (1 − h, 1] for z• ∈ [0, h) and

z• ∈ (1− h, 1] respectively.

The perceived utility of entry at z ∈ [h, 1 − h] is then
∫ z+h

z−h
m(z̃)dz̃. This is

increasing in z as m(.) is increasing in z. The cut-off z̄(h) for which entry is a

best response is given by
∫ z̄(h)+h

z̄(h)−h
m(z̃)dz̃ = 0. We can solve this to get:

z̄(h) = α− h+
1

2
k
1− exp(2kh)

exp(2kh)
+√

(h− 1

2
k
1− exp(2kh)

exp(2kh)
)2 − 1− exp(2kh)

exp(2kh)
− kh

1 + exp(2kh)

exp(2kh)
− h2

We can find parameters for which there is over-entry but a lesser extent of over-

entry when the bandwidth parameter is higher, in contrast to Proposition 4. Let

h1 = 0.1, h2 = 0.125, α = 0.5, k = −2. Then we have z̄(h1) ≈ 0.497 < α,

z̄(h2) ≈ 0.499 < α, and z̄(h1) < z̄(h2).
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A.2 Proofs

Proof of Proposition 1

Proof. Denote the set of all strategies conditional on circumstance s and control z

as Σ(z, s). Define the best response correspondence, given strategy σ̂ξ and ξ > 0:

BRξ(σ̂ξ, z, s)

= { argmax
σ(.|z,s)∈Σ(z,s)

∫
X

σ(x|z, s)[
∫
Y

u(y = y•, x, s)pπ(y
•|x• = x, z• = z; σ̂ξ)dµ(y

•)]dµ(x)

s.t σ(x′|z, s) ≥ ξ ∀x′ ∈ X}

Stack the best response correspondences into BRξ(σ̂) =
∏

z,s∈Z×S BRξ(σ̂, z, s).

Since pπ(y
•|x• = x, z• = z; σ̃) is continuous in σ̃ and the best response corre-

spondence is the set of maximizers over a compact set defined by a finite set of

inequalities, BRξ(σ̂) is nonempty for any σ̂. Moreover due to linearity in σ(x|z, s),

BRξ(.) convex valued and continuity of pπ(y
•|x• = x, z• = z; σ̃) implies BRξ(.)

has closed graph. We therefore have met all the requirements of Kakutani’s fixed

point theorem and a fixed point exists for any ξ > 0, σ∗
ξ ∈ BRξ(σ

∗
ξ ).

For any ϵ > 0, we can choose ξ > 0 in such a way that ensures that our ξ-fixed

point is an ϵ-Proxy Equilibrium. We have that σ∗
ξ (x|z, s) = ξ for all x ∈ X(z, s;σ∗

ϵ )

and (z, s). Therefore, we can choose ξ > 0 to ensure that
∑

x∈X(z,s;σ∗
ϵ )
σ∗
ξ (x|z, s) =

|X(z, s;σ∗
ϵ )|ξ < ϵ for all (z, s). This ensures our fixed point, which we denote σ∗

ϵ ,

meets the definition of ϵ-Proxy Equilibrium.

Since finiteness ensures the space of strategies Σ is compact, we can find a

convergent sequence of ϵ-equilibria as ϵ → 0, σ∗
ϵ → σ∗.

Proof of Proposition 2

Proof. We first propose a general linear solution x(s) = θ0 + θ1s, which is then

used to calculate the perceived expectation E[y|x• = x] using the properties of the

normal distribution. Under the proposed best response function, the joint normal
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distribution of (y, x•) is:

 y

x•

 ∼ N


α− β(θ0 + θ1µs)

θ0 + θ1µs

 ,

β2θ21σ
2
s + σ2

u −βθ21σ
2
s

−βθ21σ
2
s θ21σ

2
s + σ2

ϵ




Using this we can calculate the conditional expectation of y given x•.

E[y|x•] = α− β(θ0 + θ1µs)−
βθ21σ

2
s

θ21σ
2
s + σ2

ϵ

(x• − θ0 − θ1µs)

Using the utility function we then get perceived expected utility V (x, s;σ) =

−sE[y|x• = x]− 1
2
x2. Solving for a maximum then gives us x(s) =

βσ2
sθ

2
1

θ21σ
2
s+σ2

ϵ
· s. In

order to have a linear equilibria, we must therefore have θ0 = 0 and θ1 =
βσ2

sθ
2
1

θ21σ
2
s+σ2

ϵ
.

We can solve the latter cubic equation to get the equilibria in the statement of

the proposition.

Proof of Proposition 3

We first show the following fact which is used several times in our proof.

Lemma A.1. Let I[a1,b1] = [a1, b1], I[a2,b2] = [a2, b2] be intervals in [0, 1], with

a1 > a2 and b1 > b2. Then for any z1 > z2 we have that:

1[z1 ∈ [a1, b1]] · 1[z2 ∈ [a2, b2]] ≥ 1[z2 ∈ [a1, b1]] · 1[z1 ∈ [a2, b2]] (25)

Moreover, this inequality holds strictly if z1 ∈ I[a1,b1] \ I[a2,b2] or z2 ∈ I[a2,b2] \

I[a1,b1].

These facts also hold for half-open intervals I[a1,b1) = [a1, b1) and I[a2,b2) =

[a2, b2).

Proof. For the right hand side of the inequality to be equal to one requires z2 <

z1 ≤ b2, z2 ≥ a1 > a2, z1 > z2 ≥ a1 and z1 ≤ b2 < b1 so z2 ∈ [a2, b2] and

z1 ∈ [a1, b1] and the left hand side is also equal to one.

The second part of the result holds by definition and the third part is clear by

applying the arguments above again.
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We can then show an increasing best response property.

Lemma A.2. Given a perceived distribution over outcomes induced by a full-

support strategy σ, we have that V (x = 1, z;σ) is strictly increasing in z ∈ [h, 1−h].

Proof. For a given induced distribution pπ, we can use integration by parts to

write the perceived utility of the DM as follows.

V (x = 1, z;σ) =

∫ 1

0

m(z̃)pπ(z̃|z• = z, x = 1)dµ(z̃)

= m(1)−
∫ 1

0

Pπ(z̃|z• = z, x = 1)dM(z̃)

Where Pπ(z̃|z•, x = 1) is the cdf of the induced distribution and M is the

Lebesgue-Stieltjes measure satisfying M((zl, zh]) = m(zh)−m(zl) for any 0 ≤ zl <

zh ≤ 1. Since m(.) is strictly increasing and right continuous, this measure exists.

Therefore, to show the result it is enough to show Pπ(z|z•1 , x = 1) ≤ Pπ(z|z•2 , x = 1)

for any 1 − h ≥ z•1 > z•2 ≥ h and all z, with strict inequality for all z in some

interval [a, b] ⊆ [0, 1]. Our assumptions about the conditional distribution of the

proxies gives us the following sequence of claims.

By Lemma A.1, we have that for any z1 > z2 and 1− h ≥ z•1 > z•2 ≥ h.

1[z1 ∈ [z•1 − h, z•1 + h]] · 1[z2 ∈ [z•2 − h, z•2 + h]]

≥ 1[z2 ∈ [z•1 − h, z•1 + h]] · 1[z1 ∈ [z•2 − h, z•2 + h]]

With strict inequality if z1 ∈ [z•1 − h, z•1 + h] \ [z•2 − h, z•2 + h] or z2 ∈ [z•2 −

h, z•2 + h] \ [z•1 − h, z•1 + h], given any 1− h ≥ z•1 > z•2 > h.

Multiplying both sides by p(z1)σ(x=1|z1)∫
Z p(z)σ(x=1|z)p(z•1 |z)dµ(z)

· p(z2)σ(x=1|z2)∫
Z p(z)σ(x=1|z)p(z•2 |z)dµ(z)

, we can

then write:

pπ(z1|z•1)pπ(z2|z•2) ≥ pπ(z1|z•2)pπ(z2|z•1)

Integrating over both sides then gives us that Pπ(z|z•1 , x = 1) ≤ Pπ(z|z•2 , x =

1) for any z•1 > z•2 and z. By the strict inequality case above, we have that
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Pπ(z|z•1 , x = 1) < Pπ(z|z•2 , x = 1) for any z ∈ [z•1 − h, z•1 + h] ∪ [z•2 − h, z•2 + h].

This completes the proof.

An outline of the proof is as follows. We first show why any Proxy Equilibrium

with partial entry must have a cut-off structure, and give a condition that the cut-

off must satisfy in terms of perceived expected utility. We then show how we can

construct a sequence of ϵ-Proxy Equilibria that converge to this cut-off structure.

We consider partial entry Proxy Equilibrium in which σ(x = 1|z) > 0 at a

strict subset of z ∈ Z> ⊂ [0, 1]. For such an equilibrium to exist, we must have a

sequence of ϵl-Proxy Equilibria, {σ∗
ϵl
}∞l=1 that converge in distribution to it. Given

we are considering partial entry Proxy Equilibria, for large enough l we must have

that the induced belief plπ in the ϵl-Proxy Equilibrium in the sequence is such that

U(z, x = 1; plπ) ≤ 0 for all z ∈ [0, h], and that x = 1 is a best response to plπ for

some z. By the fact perceived utility is increasing in z ∈ [h, 1 − h], from Lemma

A.2, and that a partial entry equilibrium must have no entry at some signal, there

must be a cut-off z̄ϵ
l ∈ [h, 1] such that a best response is x = 0 for z ∈ [0, z̄ϵ

l
] and

x = 1 for z ∈ (z̄ϵ
l
, 1].

By the definition ϵl-Proxy Equilibrium, we must have that σ∗
ϵl
(x = 1|z) < ϵl

for all z ∈ [0, z̄ϵ
l
] and σ∗

ϵl
(x = 1|z) ≥ 1− ϵl for all z ∈ (z̄ϵ

l
, 1]. The perceived utility

of the DM at this cut-off z̄ϵ
l
is then:

∫ z̄ϵ
l

z̄ϵl−h

m(z̃)
σϵ(x = 1|z̃)p(z̃)∫ z̄ϵl+h

z̄ϵl−h
σϵ(x = 1|ẑ)p(ẑ)dµ(ẑ)

dµ(z̃)+

∫ z̄ϵ
l
+h

z̄ϵl
m(z̃)

σϵ(x = 1|z̃)p(z̃)∫ z̄ϵl+h

z̄ϵl−h
σϵ(x = 1|ẑ)p(ẑ)dµ(ẑ)

dµ(z̃) = 0

Thus as l → ∞, if our sequence of ϵ-Proxy Equilibria converges it will converge

to a Proxy Equilibrium with cut-off z̄∗ such that σ∗(x = 1|z) = 0 for z ∈ [0, z̄∗]

and σ∗(x = 1|z) = 1 for z ∈ (z̄∗, 1]. The perceived utility at the cut-off z̄∗ will

then be:
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∫ z̄+h

z̄

m(z̃)
p(z̃)∫ z̄+h

z̄
p(ẑ)dµ(ẑ)

dµ(z̃) = 0 (26)

We then construct strategies that can form a sequence of ϵ-Proxy Equilibria

that converge to a partial entry Proxy Equilibria. These strategies have a cut-

off form where σξ(x|z) = ξ ∈ (0, 1
2
) for z ∈ [0, z̄] and σξ(x|z) = 1 − ξ ∈ (1

2
, 1)

for z ∈ (z̄, 1], with z̄ ∈ [0, 1] as the cut-off. We can then define the following

conditional density over z ∈ [h, 1− h] given z• = z̄.

gξ(z|z• = z̄) =
(1− ξ)1[z̃ ∈ (z̄, z̄ + h]] + ξ1[z̃ ∈ [z̄ − h, z̄]]

(1− ξ)
∫ z̄+h

z̄
p(ẑ)dµ(ẑ) + ξ

∫ z̄

z̄−h
p(ẑ)dµ(ẑ)

p(z̃) (27)

For any cut-off z̄ ∈ [h, 1− h] and k, we can choose:

ξ(z̄, k) =
k
∫ z̄+h

z̄
p(z̃)dµ(z̃)

k
∫ z̄+h

z̄
p(z̃)dµ(z̃) + (1− k)

∫ z̄

z̄−h
p(z̃)dµ(z̃)

(28)

Which is arbitrarily small for small enough 1 > k > 0. This ensures that:

∫ z̄

z̄−h

gξ(z̃|z• = z̄)dµ(z̃) =
ξ(z̄, k)

∫ z̄

z̄−h
p(z̃)dµ(z̃)

(1− ξ(z̄, k))
∫ z̄+h

z̄
p(z̃)dµ(z̃) + ξ(z̄, k)

∫ z̄

z̄−h
p(z̃)dµ(z̃)

= k

We can then write the perceived utility at z̄ ∈ [h, 1 − h] against the beliefs

induced by strategy σξ(z̄,k) with cut-off z̄ ∈ [h, 1− h] in the following way:

∫ 1

0

m(z̃)gξ(z̄,k)(z̃|z• = z̄)dµ(z̃) = (1− k)U(z̄, x = 1; z̄) + kU(z̄, x = 1; z̄) (29)

Which is a linear combination of the terms:

U(z̄, x = 1; z̄) =

∫ z̄+h

z̄

m(z̃)
p(z̃)∫ z̄+h

z̄
p(ẑ)dµ(ẑ)

dµ(z̃) (30)

U(z̄, x = 1; z̄) =

∫ z̄

z̄−h

m(z̃)
p(z̃)∫ z̄

z̄−h
p(ẑ)dµ(ẑ)

dµ(z̃) (31)

We show that (29) is strictly increasing in z̄ ∈ [h, 1 − h] by showing (30) and
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(31) are strictly increasing in z̄.

Lemma A.3. The expressions U(z̄, x = 1; z̄) and U(z̄, x = 1; z̄) are strictly in-

creasing for all z̄ ∈ [h, 1− h].

Proof. We define densities g(z; z̄) =
1[z∈[z̄,z̄+h]]p(z)∫ z̄+h
z̄ p(z̃)dµ(z̃)

and g(z; z̄) =
1[z∈[z̄−h,z̄)]p(z)∫ z̄
z̄−h p(ẑ)dµ(ẑ)

. We

can then use the same steps as in the proof of Lemma A.2, applied with indicator

functions 1[z ∈ (ẑ, ẑ + h]] and 1[z ∈ [ẑ − h, ẑ]] instead of 1[z ∈ [ẑ − h, ẑ + h]], to

prove the result.

With these results in hand, we can then both show existence of and characterize

the equilibria for this application.

Proposition 3

Proof. At any ϵ-Proxy Equilibrium, the perceived utility of the DM is increasing

strictly for z ∈ [h, 1 − h] by Lemma A.2. The structure of the window form of

proxy mapping means that the beliefs of the DM are identical on z ∈ [0, h]. If the

DM is mixing σϵ(x = 1|z) > ϵ on z ∈ [0, h], then due to increasing expected payoff

on z ∈ [h, 1−h], they must be playing σϵ(x = 1|z) ≥ 1− ϵ on z ∈ (h, 1]. As ϵ → 0

and σϵ → σ their perceived utility at any z ∈ [0, h] given potential equilibrium σ

is:

∫ h

0

m(z)
σ(x = 1|z)p(z)∫ 1

0
σ(x = 1|z̃)p(z̃)dµ(z̃)

dµ(z) +

∫ 2h

h

m(z)
p(z)∫ 1

0
σ(x = 1|z̃)p(z̃)dµ(z̃)

dµ(z)

By the assumption that h < min{α
2
, 1−α

2
} and m is increasing, the above

expression is strictly negative. Thus for small enough ϵ at any ϵ-Proxy Equilibrium

we must have σ(x = 1|z) < ϵ for z ∈ [0, h].

From this argument and Lemma A.2, any ϵ-Proxy Equilibria in which σ(x =

1|z) ≥ ϵ for some z must have some cut-off z̄ ∈ (h, 1] such that σ(x = 1|z) ≥ ϵ only

if z > z̄. The assumption h < min{α
2
, 1−α

2
} means

∫ 1

1−h
m(z)p(z)dµ(z) > 0 which

ensures that any potential equilibrium strategy with cut-off z̄ ≥ 1 − h will have
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σ(x = 1|z) = 1 as a best response for all z ∈ [1 − h, 1], and thus σ(x = 0|z) < ϵ

for z ∈ [1− h, 1] in any ϵ-Proxy Equilibrium.

We construct the following cut-off ϵ-Proxy Equilibrium strategy. For any cut-

off z̄ ∈ (h, 1], ϵ > 0 and kϵ ∈ (0, 1), define ξ(z̄, kϵ) as in (28). Let σϵ(x = 1|z) =

ξ(z̄, kϵ) on z ∈ [0, z̄] and σϵ(x = 1|z) = 1− ξ(z̄, kϵ) on z ∈ (z̄, 1]. We choose kϵ > 0

small enough such that ϵ > supz̄∈[h,1−h] ξ(z̄, kϵ). Then if we can find a z̄∗ such that

a best response to the beliefs induced by σϵ is σ(x = 1|z) = 0 on z ∈ [0, z̄∗] and

σ(x = 1|z) = 1 on z ∈ (z̄∗, 1] we have an ϵ- Proxy Equilibrium.

We have shown that the constructed strategy induces the beliefs at the cut-off z̄

according to equation (29). We have also shown in Lemma A.3 that this expression

is strictly increasing in the cut-off z̄ ∈ [h, 1−h]. Moreover, we have that as ϵ → 0,

kϵ → 0, so this expression converges to that in equation (26). We have (26) is

strictly negative at z̄ = h and strictly positive at z̄ = 1 − h. Thus we can find a

small enough ϵ > 0 and hence kϵ > 0 such that
∫ 1

0
m(z̃)gξ(z̄,kϵ)(z̃|z• = h)dµ(z̃) < 0

and
∫ 1

0
m(z̃)gξ(z̄,kϵ)(z̃|z• = 1 − h)dµ(z̃) > 0. Since

∫ 1

0
m(s̃)gξ(z̄,kϵ)(z̃|z• = z̄)dµ(z̃)

is continuous and increasing in z̄ ∈ [h, 1 − h], we can find a z̄ = z̄∗ at which it is

equal to zero by the intermediate value theorem. This z̄∗ then gives us our ϵ-Proxy

Equilibrium cut-off as stated above. As ϵ → 0, we can find a sequence of ϵ-Proxy

Equilibria of this form that converge to that in the statement of the proposition.

Next, for contradiction consider that z̄∗ ≥ α. We have shown the cut-off z̄∗

must solve the following equation.

U(z̄∗, x = 1; z̄∗) =

∫ z̄∗+h

z̄∗
m(z̃)

p(z̃)∫ z̄∗+h

z̄∗
p(ẑ)dµ(ẑ)

dµ(z̃) = 0

Then we have U(z̄∗, x = 1; z̄∗) > 0 as all the probability weight in the dis-

tribution is in z ∈ [α, 1], a contradiction. Thus the cut-off must be such that

z̄ < α.

For the final part of the proposition, we can always find a sequence of ϵ-Proxy

Equilibria that converges to a Proxy Equilibrium with x = 0 for all z ∈ [0, 1]. For

example, with small enough ϵ > 0 we can have an ϵ-Proxy Equilibrium such that

the DM plays x = 1 with probability ϵ > 0 on [0, α) and probability ϵ2 on [α, 1].
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This induces beliefs to which x = 0 is a best response for all z.

Proof of Proposition 4

Proof. We are comparing the cut-off equilibrium at h1 with the cut-off equilibrium

at h2. Consider the perceived utility at the cut-off under the equilibrium with noise

h1.

U(z̄(h1), x = 1;h1) =

∫ z̄(h1)+h1

z̄(h1)

m(z̃)
p(z̃)∫ z̄(h1)+h1

z̄
p(ẑ)dµ(ẑ)

dµ(z̃)

As this is an equilibrium cut-off, we must have that:

∫ z̄(h1)+h1

α

m(z̃)p(z̃)dµ(z̃) +

∫ α

z̄(h1)

m(z̃)p(z̃)dµ(z̃) = 0

If z̄(h1) is fixed, then as h1 increases to h2, the first part of this expression

that has weight on the positive part of the function m(.) increases while the

second part stays fixed. Thus the perceived utility at cut-off z̄(h1) when the

perceived distribution is induced by a strategy with cut-off z̄(h1), must become

positive at noise parameter h2 > h1. We have that U(z̄(h1), x = 1;h2) > 0,

U(h1, x = 1;h2) < 0 and U(z̄, x = 1;h2) is continuous in z̄ ∈ [h1, z̄(h1)]. Therefore

by the intermediate value theorem we can find a new cut-off z̄(h2) < z̄(h1) that

characterizes the positive entry equilibrium under noise parameter h2.

Proof of Proposition 5

We prove Proposition 5 before Proposition 6 as we will use results in this section

in the proof of the latter.

We first prove a sequence of lemmas. Remember that we denote w = (y, x, z),

the perfect measurement mapping is denoted πδ and that W denotes the Borel

sets of Y ×X×Z. Enumerate the control, action and circumstance variables as 1,

2 and 3 respectively. Then we can denote any subset of the variable space {1, 2, 3}

by N ⊆ 23. We write the measure over the subset of true variables in N as PN

and the subset of the proxy variables in N as PN
π . For ease of notation in this
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section we suppress dependence of these distributions on the strategy σ.

We can relate the distribution over all variables and the distribution over a

subset N . Denote the set of Borel sets of the variable space only containing

variables in N byWN , andWN ∈ WN . The variable space containing the variables

in any subset N is denoted as VN .

PN
π (WN) = Pπ(WN × {V−N}) =

∫
Y×X×Z

π(WN × {V−N}|w)p(w)dµ(w) (32)

Lemma A.4. For any η > 0, if the proxy mapping is strongly η-close to perfect

then it is also η-close to perfect given any distribution over the true variables P .

In addition, for any subset of the variables N , if the proxy mapping is η-close

to perfect given distribution P then we have that:

TV (PN , PN
π ) < η (33)

Proof. For the first part, we have that:

TV (P, Pπ) = sup
A∈W

|P (A)− Pπ(A)|

= sup
A∈W

|
∫
Y×X×Z

πδ(A|w)dP (w)−
∫
Y×X×Z

π(A|w)dP (w)|

= sup
A∈W

|
∫
Y×X×Z

(πδ(A|w)− π(A|w))dP (w)|

≤ sup
A∈W

|
∫
Y×X×Z

∣∣πδ(A|w)− π(A|w)
∣∣ dP (w)|

<|
∫
Y×X×Z

ηdP (w)| = η

For the second part, we can show that the distance for the marginal distribution

over the subset of variables N is smaller than the distance for all the variables.

TV (PN , PN
π ) = sup

A∈WN

|PN(A)− PN
π (A)|

= sup
A∈WN×{V−N}

|P (A)− Pπ(A)|

≤ sup
A∈W

|P (A)− Pπ(A)| = TV (P, Pπ) < η
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Where the last line follows as WN × {V−N} ⊂ W . This completes the proof.

Lemma A.5. Given a distribution over true variables P that admits a density p

with respect to µ, let the sequence {πn}∞n=1 induce a sequence of distributions over

the proxy variables {Pπn}∞n=1 that converges to the true distribution P in the total

variation distance.

Then there exists a subsequence {πnk
}∞k=1 that induces, for any subset of the

variables N ,a subsequence of densities over the proxy variables {pNπnk
}∞k=1 that con-

verges pointwise µ almost everywhere to the true density, pNπnk
(w) → pN(w) for µ

almost all w ∈ Y ×X × Z.

Proof. An alternative expression for the total variation distance, given that the

distributions Q1 and Q2 over some measure space (Ω,A) admit densities q1 and

q2 with respect to some dominating measure µ, is as follows5.

TV (Q1, Q2) =
1

2

∫
Ω

|q1 − q2|dµ =
1

2
∥Q1 −Q2∥1 (34)

Therefore, convergence in the total variation distance is equivalent to conver-

gence in the L1 norm. By Lemma A.4 we have that the sequence {πn}∞n=1 induces

a sequence of distributions over the variables in N , {PN
πn
}∞n=1 which converges to

the true distribution PN in the total variation distance, and thus the L1 norm.

As each distribution in this sequence as well as the limit is assumed to admit

a density function, we have that ∥pNπn
− pN∥1 → 0. Thus, by Theorem 13.6 (pp

465) of Charalambos and Aliprantis (2006) we have that there is a subsequence

{pNπnk
}∞k=1 which converges pointwise to the true density pN almost everywhere.

We then extend this to the induced conditional distributions over proxy vari-

ables that form the agent’s beliefs under Proxy Equilibrium. For any distribution

over the true variables P that admits density p(w) = p(y|x, z)σ(x|z)p(z), let

XZ+(σ) = {(x, z) ∈ X × Z : σ(x|z)p(z) > 0}.

Lemma A.6. Given a distribution over true variables P that admits a density p

with respect to µ, let the sequence {πn}∞n=1 induce a sequence of distributions over

5See Tsybakov (2008) page 84 in Chapter 2.4 for a proof of this fact.
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the proxy variables {Pπn}∞n=1 that converges to the true distribution P in the total

variation distance.

Then for µ-almost every (y, x, z) ∈ Y × XZ+(σ) there exists a subsequence

{πnk
}∞k=1 such that the induced subsequence of perceived conditional densities {pπnk

(y• =

y|x• = x, z• = z)}∞k=1 converges pointwise to the true conditional density p(y|x, z)

almost everywhere.

Proof. By Lemma A.5 and the fact (x, z) ∈ XZ+(σ), for µ-almost every (y, x, z) ∈

Y ×XZ+(σ) both the numerator and denominator of pπk(y• = y|x• = x, z• = z)

converge pointwise to the true joint density as k → ∞.

This result can then be used to show the following continuity property for

the perceived ex-ante expected indirect utility, under the full support assumption.

Remember that under the full-support assumption XZ+(σ) = X × Z.

Proposition 5

We prove a stronger result.

Proposition 7. For µ almost every (y, x, z) ∈ Y × XZ+(σ), for any ϵ > 0

there exists an η > 0 such that if the proxy mapping π is η-close to perfect

given a true distribution P that admits a density with respect to µ and induces a

distribution over the proxy variables that satisfies the full support assumption,

then |pπ(y• = y|x• = x, z• = z)− p(y|x, z)| < ϵ.

Proof. Assume for contradiction that there exists an ϵ > 0 and (y, x, z) at which

p(x, z) > 0 holds such that for any η > 0, we can find a π such that the induced dis-

tribution over proxies satisfies the full support assumption given P , TV (P, Pπ) < η

and |pπ(y• = y|x• = x, z• = z) − p(y|x, z)| ≥ ϵ. Then by setting η = 1
n
, we can

define a sequence {πn}∞n=1 that induces a sequence of distributions over the proxy

variables {Pπn}∞n=1 converging to the true distribution P in the total variation dis-

tance. Then by Lemma A.6 we have that pπnk
(y• = y|x• = x, z• = z) → p(y|x, z),

a contradiction.
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Since Lemma A.6 holds for µ-almost every (y, x, z), we have that the result

holds µ almost everywhere.

Since the full support assumption on P implies that XZ+(σ) = X × Z, this

also proves Proposition 5.

Proof of Proposition 6

Proof. Remember that given a prospective strategy σ admitting a density,XZ+(σ) =

{(x, z) ∈ X × Z : σ(x|z)p(z) > 0}. We first prove the following Lemma.

Lemma A.7. For any ϵ > 0, we can find an an η > 0 such that if π is strongly

η-close to perfect then:

max
(x,z,s)∈XZ+(σ)×S

|
∑
y∈Y

u(y, x, s)pπ(y
• = y|x• = x, z• = z;σ)−

∑
y∈Y

u(y, x, s)p(y|x, z)| < ϵ

Proof. Define u = max(x,z,s)∈XZ+(σ)

∑
y∈Y |u(y, x, s)|. If u = 0 the result holds

trivially. Therefore consider u > 0. By Proposition 7 and the finiteness of Y ×

X × Z, for any ϵ
u
> 0 we can find an η > 0 such that if π is strongly η-close to

perfect then max(y,x,z)∈Y×XZ+(σ) |p(y|x, z) − pπ(y|x, z;σ)| < ϵ
u
. Then as required

we have that for any (x, z) ∈ XZ+(σ):

∑
y∈Y

u(y, x, s)p(y|x, z)− ϵ <
∑
y∈Y

u(y, x, s)pπ(y
• = y|x• = x, z• = z;σ)

<
∑
y∈Y

u(y, x, s)p(y|x, z) + ϵ

⇐ (Necessity): Clearly the second condition must hold for some beliefs q if σ∗

is ever a Proxy Equilibrium. If at strategy σ∗ the first condition is violated for

any system of beliefs q satisfying the second condition, then either we have that

for some (z, s), there are x ∈ supp{σ∗(.|z, s)} and x′ ∈ supp{σ∗(.|z)} such that

∑
y∈Y

u(y, x, s)p(y|x, z) <
∑
y∈Y

u(y, x′, s)p(y|x′, z)
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or there exists (z, s) ∈ Z × S, xns /∈ supp{σ∗(.|z)} and xs ∈ supp{σ∗(.|z, s)} such

that for all possible conditional beliefs q

∑
y∈Y

u(y, xs, s)p(y|xs, z) <
∑
y∈Y

u(y, xns, s)q(y|xns, z)

We show both these cases cannot hold. Define ∆ =
∑

y∈Y u(y, x′, s)p(y|x′, z)−∑
y∈Y u(y, x, s)p(y|x, z). By Lemma A.7, we can find η > 0 such that for any π

that is strongly η-close to perfect:

∑
y∈Y

u(y, x, s)p(y|x, z) + ∆

4
>

∑
y∈Y

u(y, x, s)pπ(y = y•|x• = x, z• = z;σ∗)

∑
y∈Y

u(y, x′, s)p(y|x′, z)− ∆

4
<

∑
y∈Y

u(y, x, s)pπ(y = y•|x• = x′, z• = z;σ∗)

For σ∗ to be implementable as a Proxy Equilibrium at π requires that:

∑
y∈Y

u(y, x, s)pπ(y = y•|x• = x, z• = z;σ∗) ≥
∑
y∈Y

u(y, x′, s)pπ(y = y•|x• = x′, z• = z;σ∗)

We combine this with the inequalities above to get a contradiction to the definition

of ∆.
∆

2
>

∑
y∈Y

u(y, x′, s)p(y|x′, z)−
∑
y∈Y

u(y, x, s)p(y|x, z) = ∆ > 0

For the second case, since Q(xns, z) the space of all possible conditional beliefs

given (xns, z) is compact, we have that

ξ = max
q∈Q(xns,z)

∑
y∈Y

u(y, xns, s)q(y|xns, z)−
∑
y∈Y

u(y, xs, s)p(y|xs, z) > 0

is attained. We then make the same argument as in the first step with ξ replacing

∆.

⇒ (Sufficiency): We first show the sufficiency of a proxy mapping where outcome

variables are perfectly measured, (18) is strict and the true conditional mapping

is full support. Denote the set of actions and control combinations that are not
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in the support of σ∗ by

XZns(σ∗) = {(x, z) ∈ X × Z : x /∈ supp{σ∗(.|z)}}

The set of action and control combinations in the support is then denotedXZs(σ∗) =

(X × Z) \XZns(σ∗). Then for any (xns, z) we find q ∈ Q(xns, z), so as to satisfy

(18) strictly. For any r ∈ (0, 1), we construct beliefs for all (x, z) ∈ XZs(σ∗)

q̂(y|x, z) = 1

r
p(y|x, z)− 1− r

r

∑
(x′,z′)∈XZns(σ∗)

q(y|x′, z′)
1

|XZns(σ∗)|

For r close to 1, since p(y|x, z) ∈ (0, 1) for all (y, x, z) we have that q̂(y|xns, z) ∈

(0, 1) for all (xns, z). To implement these beliefs, we define the proxy mapping

πc(y
• = y, x•, z•|y, x, z) =


q̂(y|x,z)rσ∗(x|z)p(z)∑
x̃,z̃ p(y|x̃,z̃)σ∗(x̃|z̃)p(z̃) if (x, z) ∈ XZs(σ∗)

q(y|x,z) 1−r
|XZns(σ∗)|∑

x̃,z̃ p(y|x̃,z̃)σ∗(x̃|z̃)p(z̃) if (x, z) ∈ XZns(σ∗)

with πc(y
• ̸= y, x•, z•|y, x, z) = 0. We can the see that by our definition of q̂ that

for any (y, x, z) ∈ Y ×X × Z,
∑

y• πc(y
•, x•, z•|y, x, z) > 0 and:

∑
y•,x•,z•

πc(y
•, x•, z•|y, x, z) =

∑
x•,z•

πc(y
• = y, x•, z•|y, x, z)

=
r
∑

(x,z)∈XZs(σ∗) q̂(y|x, z)σ∗(x|z)p(z) + (1− r)
∑

(x,z)∈XZns(σ∗) q(y|x, z)
1

XZns(σ∗)∑
x̃,z̃ p(y|x̃, z̃)σ∗(x̃|z̃)p(z̃)

= 1

Thus we have that πc is a valid proxy mapping. For any η > 0 we can then define:

π(y•, x•, z•|y, x, z) = (1− η)πδ(y
•, x•, z•|y, x, z) + ηπc(y

•, x•, z•|y, x, z)

Clearly this proxy mapping is strongly-η close to perfect. This mapping induces
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conditional beliefs according to

pπ(y|x•, z•;σ∗)

=
(1− η)p(y•|x•, z•)σ∗(x•|z•)p(z•) + ηπc(x

•, z•|y)
∑

x,z p(y|x, z)σ∗(x|z)p(z)
(1− η)σ∗(x•|z•)p(z•) + η

∑
y πc(x•, z•|y)

∑
x,z p(y|x, z)σ∗(x|z)p(z)

Which means that for (x, z) ∈ XZs(σ∗), pπ(y|x, z;σ∗) = 1−η
(1−η)+rη

p(y|x, z) +
rη

(1−η)+rη
q̂(y|x, z) while for (x, z) ∈ XZns(σ∗) we have pπ(y|x, z;σ∗) = q(y|x, z).

We can choose r so that q̂(y|x, z) is arbitrarily close to p(y|x, z). Therefore by

Lemma A.7, we have that we can find r close enough to one such that σ∗ is a

Proxy Equilibrium due to the strict conditions (18).

Finally consider the case with only weak inequality and without full support.

We can construct a proxy mapping that is strongly η-close to perfect in the same

manner, with πc instead such that for any (y, x, z) such that x ∈ supp{σ∗(.|z)} we

have perfect measurement.

πc(y
•, x•, z•|y, x, z) = πδ(y

•, x•, z•|y, x, z)

While for any (x, z) such that x /∈ supp{σ∗(.|z)}, chose q ∈ Q(x, z) such that (18)

holds.

πc(y
•, x•, z•|y, x, z) = q(y•|x•, x•)p̂(x•, z•)

With p̂ as any joint distribution such that p̂(x•, z•) > 0 for all (x•, z•).
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Gonçalves, D. (2022). Sequential sampling and equilibrium. Mimeo.

Haltiwanger, J. (2015). Job creation, job destruction, and productivity growth:
The role of young businesses. Annual Reviews of Economics 7 (1), 341–358.

Hayward, M. L., D. A. Shepherd, and D. Griffin (2006). A hubris theory of
entrepreneurship. Management Science 52 (2), 160–172.
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