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JEL classification: When using data, an analyst often only has access to proxies of the true variables. I propose a
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perfect measurements. Due to feedback from choices into data, a notion of equilibrium is required
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In these applications, we see that very small imperfections in the proxy variable can lead to large
distortions in beliefs. I show that the set of strategies that can arise as equilibria with arbitrarily
close to perfect measurement coincides with a version of Self-Confirming Equilibrium.

1. Introduction

Analysis of quantitative data to inform decisions is increasingly important to organizations and firms. However, data used in
economic decision making are often imperfect measurements or proxies of the underlying variables of interest. Examples of proxy
variables that play an important role in driving allocation of economic resources abound. GDP per capita is used as a proxy for living
standards,' and guides entrepreneurs and traders in assessing the relative economic vitality of countries in which they are considering
investment. Academic institutions use various citation metrics as proxies for academic impact.

Whilst a growing literature studies the impact of economic decision makers having a misspecified model of their environment,?
this work generally considers decision makers who interpret perfectly measured data in an incorrect way. In this paper, I propose
a framework where decision makers have a correct model of the world, but naively use potentially mismeasured proxy variables to
form beliefs. The decision makers (henceforth DMs) treat the proxy variables as if they were exactly identical to the true variables that
affect their utility.

The structure of the DMs’ problem is as follows. First they draw the realization of signal variables s. They then choose an action
variable x, and both the action and the signals then affect the realization of an outcome variable y. There is a true joint distribution
over the variables reflecting these causal relationships.

p(¥,x,8) = p(y|x, $)p(x|s)p(s) (@}

The proxy variables (y*, x*, s*) are drawn from a distribution x that depends on (y, x, s), resulting in the following joint distribution
over the proxies.
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Py, x",s7) = 2 (¥, X", 8"y, x, 9)p(y, x, 5) @
(¥,X,5)EY XX XS
The DM has a vNM utility function defined over the true variables: u(y, x, s). Therefore they need to form beliefs about the conditional
distribution y|x, s. The DM forms these beliefs by taking the proxies at face value
Py =yx" =x,5"=5)

Py =y = x5 = 5)= — ®)
P (x"=Xx,5"=5)

If the proxies were perfect measurements this would recover the true conditional distribution p(y|x, s), but with mismeasured proxies
the beliefs formed according to this procedure are distorted. As is often the case in the misspecified models literature, with mismea-
sured proxies the beliefs of the DM can endogenously depend on the choices the DM makes. I therefore define a notion of Proxy
Equilibrium that ensures consistency between these choices and the proxy distribution used to form beliefs.

A preview of the first application in the paper can illustrate why these feedback effects are of interest. Suppose the decision
maker is a municipal policymaker who must decide on the number of police officers to employ. Before deciding, they first learn the
realization of a signal variable s that affects the cost of crime but not the level of crime. The police numbers x they choose then
affect the crime level y. Assume that the proxy variable for police numbers exhibits classical measurement error x* = x + ¢ with
e ~ N'(0,Var(e)), while the proxy for crime is a perfect measurement y* = y.> Suppose that the true relationship between crime and
police numbers is linear: y = —fx for some f > 0.

Under this form of classical measurement error with a linear Gaussian model, the expected level of crime conditional on police
numbers estimated using the proxies is attenuated towards zero according to the following formula*

Var(x)

E[Y'|X'=X]=—ﬂmx @

The dependence of this formula on true variance in the number of police officers V ar(x) illustrates the endogenous effects of the
DM choices on their beliefs. When V ar(x) is small, there can be large attenuation bias even when the measurement error problem is
also small and V ar(¢) is close to zero. If V ar(x) were fixed, then a small measurement problem would mean the extent of attenuation
bias is also small.

In this policing application the neglect of measurement error results in overly rigid policy. Due to the attenuation bias in the
measured relationship between policing and crime, policymakers vary police numbers with the cost of crime less than they would
if they knew the true relationship. This rigidity can be extreme: there exists a Proxy Equilibrium where municipalities do not vary
police numbers at all. This is true regardless of how strong the true relationship between crime and policing is, or how close police
numbers are to being perfectly measured. Feedback effects result in a multiplicity of equilibria and a stark discontinuity between the
extent of imperfection in proxy variables and the extent of the bias in the beliefs of the DMs. These features would not be apparent
in a non-equilibrium analysis of attenuation bias.

In the second application, noisy measurement and equilibrium selection effects result in endogenous overoptimism and thus over-
entry by firms deciding whether to enter a market. Moreover, the impact of changes in measurement noise can differ in important
ways for pivotal firms who are on the margin between different choices and firms who are not. Due to the impact on the pivotal
firm who must be indifferent between entering or not, more proxy ‘noise’ results in a greater extent of excessive entry. Without this
equilibrium feedback effect, the effect of noise on entry is ambiguous. This is in contrast to other work on the behavioral bias caused
by selection effects, such as Jehiel (2018) and Esponda and Pouzo (2017), in which more noise has an ambiguous effect on entry
both in and out of equilibrium.

I build on the insights in these applications and give a characterization of all strategies that could arise as Proxy Equilibria
when the proxy variables are arbitrarily close to being perfect measurements. I show that a strategy can be implemented as a Proxy
Equilibrium for some proxy mapping that is arbitrarily close to perfect measurement if and only if it can be implemented as a version
of Self-Confirming Equilibrium that I call Self-Confirming Optimal.

The characterization result clarifies a theme arising in the two applications; that small measurement problems can have a large
effect on beliefs when the equilibrium strategy only puts weight on particular actions. The result also demonstrates the differences
between Proxy Equilibrium and Self-Confirming Optimality. For general noise, a Proxy Equilibrium is not necessarily Self-Confirming
Optimal as it allows beliefs that can differ from rational expectations for any action-signal combination. For particular almost-perfectly
measured noise structures the set of Proxy Equilibrium can significantly refine the set of Self-Confirming Optimal strategies.

Proxy Equilibrium draws a distinction between the fact that the DM knows the realization of the signals and the action they have
chosen but does not know how these variables covary with the outcomes. The story I have in mind is that Proxy Equilibrium is the
long run steady state of some learning process. The learning process does not feature a long lived agent who repeats the same decision
problem enough times to generate an asymptotic sample, but instead a sequence of short-lived agent who have to rely on a large
public dataset of potentially mismeasured proxies generated by DMs in similar situations. In the policing application we can imagine
a sequence of short lived municipal leaders. The data generated from each municipal leader’s tenure is too sparse to apply the law of
large numbers, so they have to draw inference from a national dataset designed for social scientists researching crime.

3 The DM is assumed to lack an informative proxy for the cost of crime s in this application.
4 See Chapter 3 of Carroll et al. (2006) for a detailed review of this kind of measurement error.
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The main contribution of the paper is to develop an equilibrium framework in which we can model economic decision makers
who use proxy variables. The applications in the paper show that taking into account how calculated decision making feeds back
into data can raise issues that would not be apparent from a purely statistical analysis of the use of proxy variables. The paper also
contributes to the literature on solution concepts with boundedly rational expectations. The concept generally does not fall neatly
into others in the literature, and I explore these connections in Section 6.

2. Modeling set up

The space of variables V' can be divided into a set of m signals .S C R", a set of actions X C R and a set of outcomes Y C R. The
variable space can thus be described as the product V' =Y X X X .S. Assume the variable space is finite. In Appendix A.1 I show how
the definition of Proxy Equilibrium can be extended to allow for general non-finite variable spaces.®

The DM learns the realization of the signals s € .S, before choosing an action x € X resulting in a distribution over the outcome
variable y € Y. The payoff of the DM is defined over the signal, action and outcome variables by utility functionu : ¥ X X X .S — R.
The DM wants to form the conditional distribution p(y|x, s). Doing this, they can calculate their objective expected utility

Ulx,)= ) u(y,x, $)p(ylx, ) (5)
yeyYy
Throughout the paper we treat choosing actions to maximize this expression as the normative benchmark. Let ¢ : .S — A(X) denote
a strategy mapping. Assume the signal distribution is full support; p(s) > 0 for all s € S. The joint distribution over outcomes, actions
and signals can then be written as follows.

Py, x,5,0) = p(ylx, s)o(x|s)p(s) (6)
2.1. Proxy variables

In order to form beliefs about the conditional distribution y|x, s, the DM needs to have information on the joint distribution of
(¥, x,s). We assume that the DM can only access the joint distribution over proxies for these variables. Each of the variables has a
respective proxy that can take any of the values the variable it is a proxy for can take. We denote a realization of the proxy for the
outcome, action and signal by ()*,x*,s*) € Y X X X § respectively. We define a proxy mapping = : Y X X X § — A(Y X X X §) that
induces a distribution over the proxies for any realization of the true variables. The induced distribution over proxy variables is

P05 X s = Y a0 X Ty X, )Py, X, 550) )
V. X,SEY XX XS
The DM needs to form beliefs about how their action affects the distribution over outcomes. We assume the DM uses the distribution
over proxies p, to form conditional beliefs.
(¥, X", 5% 0)

PV Ix" 5T o) = T ®
Pr(x°,5%50)

Given this distorted belief distribution, the agent with signal s chooses an action x to maximize the perceived utility given below.

V(x,s;0)= Z u(y=y",x,9)p,(y'|x" =x,5" =5:0) (C)]
yeyYy

2.1.1. The proxy mapping

Consider that i is any of the three variables, and that we can denote a realization of the true variable by v; and a realization of the
proxy by v;. It is possible that a proxy is a perfect measure for the underlying true variable, v} = v;. Indeed, for all the applications
in this paper some of the variables are perfectly observed. In the case where v} # v; with nonzero probability, we say that i* is a
mismeasurement of i. In applications, for simplicity we generally avoid drawing a distinction between the true and proxy variable
when the proxy is a perfect measurement.

A proxy mapping that induces an identical joint distribution over the proxy variables and the true variables —for any initial
distribution of the true variables— is called the perfect measurement mapping. Throughout the paper, we say that the beliefs induced by
the perfect measurement mapping comprise the rational expectations benchmark or induce correct beliefs. In the absence of a knowledge
of the true relationship between variables a rational Bayesian DM would have to form a prior belief about how the proxies and the
true variables relate. From a normative perspective it is unclear how such a belief should be formed.

The formalism allows the DM to have imperfect equilibrium knowledge of the distribution of actions. This is motivated by a
population level interpretation, where the dataset the DM is using to form beliefs is generated by other DMs facing the same or
similar decision problems. The DM’s own record of past actions only makes up a negligible part of this dataset. For example, a DM in
a particular city may draw inference from a national level dataset when inferring the effect of a policy action on an outcome.

5 The applications in Sections 3 and 4 require this general definition.
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This allowance differs from the requirement of knowledge of the distribution of own actions in other solution concepts in the
literature, such as Berk-Nash Equilibrium (Esponda and Pouzo, 2016) or Self-Confirming Equilibrium (Fudenberg and Levine, 1993).
We discuss the substantive difference this can make in Section 6.

2.2. Equilibrium
We illustrate the dependence the decision maker’s beliefs on their strategy o(x|s) using the following binary example.

Example 1. A team sports coach learns whether the realization of a signal s determining the cost of player injuries is high s = 5 or low
s = 5 < 5, before choosing whether to adopt attacking tactics x = 1 or defensive tactics x = 0. The game tactics in turn affects whether
the injury levels of the players post-game is high y =1 or low y =0 according to the relationship p(y = 1|x) = fix + (1 — f)(1 — x),
where g € (%, 1).

The prior distribution over the injury cost signal is p(5) = % We assume the injury variable y is perfectly measured, but that the
coach has no reliable proxy data for the injury cost. We can therefore write the proxy mapping as

. e . 1 . .
(¥, x", 5"y, x,5) = Eﬂx(x [X)T{y=y"} (10)

for some mapping 7, : X — A(X). The tactical stance of teams is hard to measure, and sports analysts have created a proxy measure-
ment from a large dataset of past games. Thus tactical stance is subject to measurement error, which we can write using the proxy
mapping 7, (x* = x|x) = A where A € (%, 1]. As 4 — 1 we have close to perfect measurement for this variable.

Denote the ex-ante strategy as o(1) = %a(l |5) + %o-(l |s). The perceived effect of attacking tactics on high injury levels can then
be calculated as
o(1)A o=
oc(DA+060)(1—-24) o(1)(1—-2)+0(0)A
When the probability of attacking tactics o(1) falls, a greater proportion of the observations of attacking tactics are actually misclas-

sified cases where defensive tactics occurred. This attenuates the perceived effect of attacking tactics on injuries from the true effect
2p — 1> 0 towards 0.

P, =1lx"=1;0)—p, (3 = 1|x"=0;0) = (2 — 1)(

(1)

Thus, to characterize the DM’s choices in general we need to define an equilibrium concept in order to establish consistency
between strategies and beliefs. To ensure that conditional distributions are well defined, we first define an equilibrium with a small
trembling probability.

Definition 1. Let ¢ be a strategy such that p,(x*,s";67) > 0 for every (x°,s*) € X X S. Then o7 is an e-Proxy Equilibrium if for
every s € .S, if

X ¢ arg max Z uy=y",x9)p,('|x" =x,5" =s;07)
yEey:

we have that o7 (x|s) <e.
We then define a Proxy Equilibrium as the limit where the tremble probability goes to zero.

Definition 2. A strategy o™ is a Proxy Equilibrium if there exists a sequence {o-,* }1021 converging to ¢* as well as a sequence €/ — 0,
such that for every /, o] is an €'-Proxy Equilibrium.

When the proxy mapping satisfies a minimal responsiveness condition, we can show the existence of at least one Proxy Equilibrium
using conventional methods. A proxy mapping x is minimally responsive if whenever strategy mapping is full support supp(c(.|s)) = X
for all s € §; then we have p,(x*,s*;6) > O for any realization (x°,s*) € X X S.

Proposition 1. Assume the proxy mapping x is minimally responsive. Then a Proxy Equilibrium exists.
Proof. In Appendix. []
3. An illustrative application: rigid policing

Assume the DM is a municipality that has to make a decision on the number of police officers to hire. The municipality wants

to hire police officers in order to reduce crime. We assume that there is noise in the measured variable for police numbers. Concern

about measurement error in police staffing figures is not unprecedented. It is argued by Chalfin and McCrary (2018) that based
on discrepancies between official data and administrative and census information there is significant measurement error in police
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staffing numbers in the literature estimating the effect of police numbers on crime. For expositional purposes, we assume that the
crime variable is measured perfectly.®

The municipal leaders first learn the realization of a variable affecting the cost of crime in their municipality s. This is assumed
to be distributed normally in the population of municipalities used in the dataset under consideration, s ~ N (u, af). The municipal
leaders then choose the change in the number of police officers. This affects the change in crime observed under their leadership via
the relationship y = a — fx + u, where u ~ N'(0, o-f) and f > 0. In the available data, it is assumed that changes in police numbers are
measured as x* = x + ¢, where ¢ is normally distributed measurement error € ~ N'(0, 03). The DM lacks an informative proxy for the
signal s, meaning that p,(y°|x",s*) = p,(3"|x") for all (3, x",s*) €Y X X x .S, and so beliefs do not depend on the signal.”

The utility function of the municipal leader trades-off crime and policing costs. Higher s is assumed to reflect higher costs of crime
relative to altering police numbers. We assume a symmetric cost of hiring and firing police officers. An alternative interpretation is
that all the variables are in logs of the levels.

R (12)

Denote the rational expectations benchmark for how policing affects crime levels in expectation by E[y|x] = f(x) = a — fx. We
can see that by plugging this into the utility function and calculating the best response that the optimal strategy under rational
expectations for the municipal leader is to set police numbers such that x*(s) = fis. Thus the rational expectations benchmark is for
police numbers to be increased by more when the costs of crime is larger (higher s) and the effect of police numbers on crime is
greater (higher |f|). Define a linear equilibrium as an equilibrium in which the strategy of the policy maker can be expressed as a
linear function of the cost variable, x(s) = 6, + 6, s for some (6,,,60,) € R?. We can characterize all the linear equilibria of the model
as follows.

Proposition 2. There is always a linear Proxy Equilibrium in which the municipal leader never changes police numbers, with best response
x"(s)=0.
2
In addition, if |f| > 2%, then there exist two additional linear Proxy Equilibria, with best response x~(s) = (% p— %‘ [ p% — 4%)s and
)= (lp+ Ly /pr—a
x (s)—(2/3+2 p 46S2)s.

There are no other linear Proxy Equilibria.
Proof. In Appendix. []

As previewed in the introduction through equation (4), due to measurement error in the police numbers proxy there is downward

attenuation bias in the municipal leader’s estimate of the expected change in the level of crime for any given change in police numbers.
OE[y*|x"=x] _ Var(x)

. - 2

ox Var(x) +o;

13

For fixed V ar(x), this is attenuation bias from classical measurement error of the sort we see explained in introductory economet-
rics or statistics textbooks (See Wooldridge (2020), Chapter 9.4). What Proxy Equilibrium adds to the analysis is the endogeneity of
V ar(x), which is determined by the equilibrium strategy ¢. Under linear strategy x(s) =, - s, we have that Var(x) = 0%052. Combining
this with our attenuated formula for the marginal perceived effect of policing on crime gives

2.2
E X _ 0o a4
ox* 6%62 + 62
1°7s €
Given the preferences of the municipalities, their equilibrium best response has to be such that % = —0,, so that greater

perceived marginal effect of policing results in greater responsiveness of policing to the cost of crime s. Solving this equation then
gives the linear Proxy Equilibria in Proposition 2.

The endogeneity of the true policing variable under Proxy Equilibrium results in multiplicity of equilibria. For a fixed measurement
structure 7, we have both an equilibrium where municipalities do not vary police numbers at all and equilibria where police numbers
vary proportionally to the effectiveness of policing |f|. We can see how this is starkly different from a purely statistical analysis
without endogenous actions by considering the case when the measurement error is arbitrarily small and o, is close to zero. Here
we have the coexistence of an equilibrium where police numbers are at close to the same level as under perfect measurement with

6 Adding normally distributed measurement error to the crime variable, so that y* = y + v with v ~ N'(0, 63), does not change either the set of Proxy Equilibria nor
does it change the rational expectations benchmark. That the rational expectations benchmark is unchanged is easy to see due to linearity of expectations. The same is
true in the Proxy Equilibrium case due to both the linearity of the conditional expectation and the fact that the additional variance in y* does not affect the marginal
perceived incentive over the policing variable.

7 The conditions on the proxy mapping for an uninformative signal proxy in this application require the definition of Proxy Equilibrium for general spaces in
Appendix A.1. The condition is that for any Borel sets Y X X X S CY X X X S, we can decompose the proxy mapping as 7(Y X X X S|y, x, s) = z,(S|s)x, (¥ X X|y, x).
Note also that since for the true variables p(y|x, s) = p(y|x), with no informative proxy for s perfect measurement of (y, x) still results in correct beliefs.
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an equilibrium with massive attenuation bias and no variation in police numbers at all. A purely statistical analysis of measurement
error in this situation would focus on either one or the other.

A simple dynamic story of how these equilibria emerge can also give an intuition for why there is multiplicity. Suppose that DMs
initially believe that policing has little effect on crime. This leads to little variation in police numbers across the municipalities, as
it is not worth hiring and firing police officers if they have no effect. In steady state this leads to the no variation equilibrium. In
contrast, if the DM believes initially that police have a large effect on crime, then municipalities who face a higher cost of crime will
higher relatively more police officers. This can generate enough variation to mitigate the attenuation bias somewhat and preserve
the DMs’ beliefs about the effectiveness of policing in equilibrium.

In all linear Proxy Equilibria, the policy chosen is more rigid than the rational benchmark. The rigidity results solely from bias
beliefs due to measurement noise, and as discussed above extreme rigidity can coincide with very small noise. Apparent over-rigidity
in choices has been discussed in relation to monetary policy Tetlow and Von zur Muehlen (2001) and firm pricing Nakamura and
Steinsson (2013). It is possible that this application could be extended into a more complicated model that could provide an alternative
explanation of these phenomena as resulting from use of mismeasured data from decision makers.

The simple parameterization in the policing application focuses on the case where we have normally distributed measurement
error in a linear model with a single explanatory variable. Although this results in attenuation bias, it is not true that for general
measurement error attenuation bias always arises. As a concept Proxy Equilibrium is able to capture alternative measurement error
structures, such as those described in Schennach (2022), and future applications of Proxy Equilibrium could utilize some of these
alternative structures.

4. Market entry: endogenous overoptimism

Businesses entering into new markets have high rates of failure. Using data from the US Census Bureau Haltiwanger (2015)
calculates that half of new firms exit the market within 5 years. In UK data, 38 percent of enterprises newly born in 2016 survived
5 years.® A literature in business and economics attributes these seemingly excessive levels of market entry to overoptimism on the
part of the potential market entrants, see Hayward et al. (2006), Cooper et al. (1988), Malmendier and Tate (2005).

We build an application of our solution concept that generates firms that have an upwardly biased assessment of the payoffs from
entering new markets as a feature of equilibrium. Firms draw on noisily recorded data drawn from past entrants. There is a variable
s €[0, 1] =S, representing the location of markets in some space, which could be geographical or based on demographic information.
After learning the realization of this variable, the potential market entrant has to make a binary decision on whether to enter x =1 or
not x = 0. The payoff of the entrant is measured via an outcome variable y € R =Y representing the profitability of the enterprise, so
that u(y, x, s) = y. The outcome variable is determined by both the entry decision and the market location variable by the following
relationship.

[E[ylx,S]=/yp(ylx,s)d/t(y)=m(s)x (15)
Y

We assume that the function m : S — R is strictly increasing, bounded and right-continuous, with a single point of crossing
a € [0,1] such that m(s) <0 for all s € [0,«) and m(s) > 0 for s € [«, 1]. Thus for high enough realizations of the market location
variable, the expected profitability of entry is always greater than the payoff of zero from not entering. Under rational expectations
the best response of the potential entrant is clear; when s € [0,@) x = 0 is optimal while for s € [a, 1] the payoff from entering is
weakly above zero and therefore entry is optimal.

We assume that while the potential entrant has perfectly measured data on firm profitability y and past entry choices x, they do
not have data on how the market location s varies with the outcome and action variable. Instead they have access to a noisy recorded
proxy variable for the location s°. The idea is that each market has a very granular definition, and in data it can only be recorded in an
imprecise fashion. This could be due to data protection reasons when s is demographic information, for example. Thus we assume the
proxy variable is generated by a mapping that has the following ‘window’ form.” There is some parameter 4 € (0, l) such that every
firm location is recorded in the data as being uniformly distributed in the nearest window of size 2A. This means for s € [h, 1 — h] we
have that s* is uniformly distributed on the window [s — A, s + h], while for locations close to the boundary when s € [0, h) we have
that s* is distributed uniformly on [0,24) and for all s € (1 — h, 1] we have that s° is distributed uniformly on s € (1 —2h, 1].

The following result shows both that Proxy Equilibria exist in this setting and that any Proxy Equilibrium with entry will take a
cut-off form. We assume /4 < min{ % I_T“ }.10

1-a

Proposition 3. Assume h < min{ % - }. Then there is a cut-off 5 € [h,1 — h] such that there is a Proxy Equilibrium with strategy o(x =
1|s)=0 for s €[0,5] and o(x =1|s) =1 for s € (5, 1].
This cut-off is always strictly less than the rational entry point; s < .

8 This statistic is from Office for National Statistics (2023).
9 This window form of proxy noise is similar to the notion of similarity used in Steiner and Stewart’s (2008) model of learning in games.
10 This ensures 4 is small enough so that the firm will not enter at low values of s and there is always an equilibrium in which the firm will enter at high values of s.
The absence of this requirement on bandwidth parameter 4 complicates the analysis by requiring us to consider additional cases, but does not create a fundamental
difference in that we can regard these cases as cut-off equilibria with cut-off points at the boundary.
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In addition, there is always a Proxy Equilibrium where o(x = 1|s) =0 for all s € [0, 1].
There are no other Proxy Equilibria.

Proof. In Appendix. []

We see that in equilibrium, if there is entry there is over-entry. Since in the equilibrium data there is negligible observations of
entrants below a certain market location, the proxy observations for these markets are disproportionately higher location markets
that have been misclassified as lower ones. This leads to an overestimate of the payoff from entering at these lower levels. However,
enough over-entry reduces the extent of this proxy bias and in equilibrium the DM is indifferent between entering or not at some cut-
off 5 below the cut-off they would enter at under rational expectations. Note also that there is always an equilibrium with no-entry,
even if the measurement problem is very small and 4 is close to zero. The discontinuity between the size of measurement error and
the bias in beliefs which holds in the policing application also holds in the market entry model.

While this equilibrium distortion in beliefs resembles the selection bias studied by econometricians such as in Heckman (1979),
the distortion is caused by the interaction of the proxy noise and the extreme difference in the number of entering firms above and
below the cut-off rather than complete lack of observations that do not meet some selection criteria. The Proxy Equilibrium with
entry is the limit of a trembling-hand sequence of equilibria which have entry and non-entry at all signals. The overestimation of the
value of entry only systematically occurs at signals that are close to the entry threshold, and at signals far from the threshold the
firm can underestimate the value of entry depending on the parameters. This is a distinguishing feature from Jehiel (2018)’s model
of selection bias and firm entry, where firms over-estimate the value of entry at all signals.

The fact there is a systematic effect of the beliefs of the pivotal firm is important for the following result, which establishes
comparative statics for how Proxy Equilibria vary with the noise parameter. We see that noisier proxies —in the form of higher h—
always lead to greater levels of excessive entry.

Proposition 4. Consider two noise parameters min{ % ]%“} > hy > hy > 0. We have that the cut-off 5(h,) under the positive entry Proxy
Equilibrium with noise parameter h, is strictly less that the cut-off 5(h;) under h,.

Proof. In Appendix. []

The intuition for this result is as follows. In general —for a fixed belief distribution— it is ambiguous whether larger / increases
or decreases the payoff from entry at any given s. However, in equilibrium what matters is the beliefs at the pivotal cut-off 5. At the
cut-off the DM must be indifferent between entering and not. An increase in 4 will always lead to greater weight on the part of the
function m(s) that is above the cut-off, in particular greater weight on the positive part of m(s). This pushes up the expected payoff
from entering strictly above zero at this cut-off, and the new cut-off at the larger 4 must be below in order to restore indifference.

The equilibrium requirement is vital for Proposition 4. If beliefs are formed from a proxy distribution with the action distribution
fixed, and are not required to satisfy equilibrium conditions, we can construct cases in which entry is both excessive and increasing
h results in firms choosing to enter at fewer signals. An example where this is the case is presented in Appendix A.2. In general,
increasing proxy noise 4 does not lead to a change in beliefs resembling the DM having less information in a Blackwell (1953) sense.
Depending on the shape of m(.) and the true signal distribution p(s) increasing /4 from some baseline can actually result in beliefs
that are closer to those that would occur with perfect measurement. Proposition 4 holds because the equilibrium requirements mean
increasing h leads the beliefs for the pivotal firm to always over-value entry relative to the rational benchmark.

As a corollary to Proposition 3 and 4, we have that as 4 — 0, the cut-off equilibrium converges to the rational entry strategy. This
is because 5(h) < a and 5(h) is strictly decreasing in hA.

Corollary 4.1. Consider any sequence of bandwidth parameters {h;};2, such that 0 < h; < min{ % I_T“ } for all I and h; — 0. Then the
corresponding sequence of Proxy Equilibrium cut-offs {5(h;)}}2, is such that 5(h;) — a from below.

5. Almost perfect proxies

In this section we characterize the set of all strategies that can arise as Proxy Equilibria even as the variables are arbitrarily close
to being perfectly measured. We call these strategies Self-Confirming Optimal. Self-confirming optimality is an adaption of the Self-
Confirming Equilibrium of Fudenberg and Levine (1993), Battigalli (1987) to our setting. These strategies are optimal against any
perceived beliefs that are correct ‘on-path’. That is to say, correct for actions-signal combinations that occur with positive probability
under the strategy itself. If a strategy is in the set, then we can choose a particular proxy mapping that implements that strategy as
an equilibrium. If a strategy does not meet the conditions to be Self-Confirming Optimal, then it cannot be implemented as a Proxy
Equilibrium for some proxy mapping that is above a certain level of proximity to perfect measurement.

In Section 6 we discuss another variant of SCE that differs from Self-Confirming Optimality in that DMs obtain even more limited
feedback. Proxy Equilibrium can be considered a refinement of this more permissive version of SCE but in general is not a refinement
of Self-Confirming Optimality if we have a general proxy mapping that is not required to be almost perfectly measured.
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5.1. Definition of almost perfect proxies

The following division of the signal space allows us to distinguish between private payoff shocks and control signals. The DM has
access to informative data on how control signals covary with actions and outcomes. Our notion of perfect measurement then applies
to the control signals along with the actions and outcomes.

Split the signal vector s = (sy,...,5,,) € .S into two component parts. The last 1 </ < m dimensions are a set of private signals
s? =(sy, ..., s,,). Denote the remaining signal dimensions by s, = (s{, ..., s;_1), so that s = (s, sp) eES=S,x Sp. We call the remaining
signals s, € S, control signals. The private signal dimensions do not affect the outcome variable; p(y|x,s.,s,) = p(y|x,s.) for all
¥, x, 8,8 p) EYXXXS,X Sp. In addition, the DM does not have informative proxies for the private signals. For some 7y, : Sp — A(Sp)
with full support on S, supp(;rsp) =S, we have that

(X80 8,1y, X, 80,8,) = 7 (5w X7, 501y, X, 5005,) (16)

for all (y,x,5.,5,) €Y X X X S, X S,. This means it is without loss to focus on beliefs condition on control signals p, (y|x,s.) rather
than conditional on all signals p,(y|x, s).

We define the perfect measurement proxy mapping r5 as a proxy mapping which gives perfect measurement for the outcome, action
and control signals

s (VX so |y, X, 5c08,) = Z 75(V xS s,y X5 5,) = TGN X7 57) = (0, x5, ) a7)
SHES,
Similarly, denote the proxy mapping over the outcome, action and control signals by
Ty x5, 05 XS %50 5,) = Y T, X888 X, 50 5,) (18)
SHES)
The Total Variation distance between any two probability distributions p and ¢ is

TV (p.q) = max yepa] 3, (@)~ Y q(a)| (19)
aceA aeA

We use the Total Variation distance to define a notion of proximity of the proxy variables to perfect measurement.

Definition 3. Given # > 0, we say the proxy mapping z is #-close to perfect if
TV (zy x,5,(1y.%,8), m5( |y, x,5)) <n (20)

We state a result demonstrating why our notion of proximity is suitable for the Proxy Equilibrium setting. It implies that if the joint
distribution over the true variables satisfies a full support requirement, then beliefs become arbitrarily close to rational expectations
as the proxy variables become close to perfect measurements in the total variation distance. Since our notion of almost perfect
measurement applies to the control signals but not the private signals, the result demonstrates that good measurement for the control
signals, actions and outcomes is all that is required to have convergence to correct beliefs.

Given distribution over the true variables p(y, x, s) = p(y|x, s)o(x|s)p(s), let V*(6) = {(x,s.) € X X S, : p(x,s,) > 0} be the support
on X x S, induced by o. We say a strategy ¢ induces full support if V() = X x S,. We can show that a continuity property holds
for the perceived conditional distribution for any (x, s) that is in the induced support of o.

Proposition 5. Fix strategy . For any € > 0, there exists an n > 0 such that if the proxy mapping = is n-close to perfect then

P, (v =yIx"=x,5, =5,;0) = p(ylx,s.)| <€

for every (x,s,))€V*(c)and y€Y.
Proof. In Appendix. []

The result concerns both equilibrium and out of equilibrium beliefs, and can be used as a diagnostic when considering equilibria
in which full-support does not hold. For example, in our policing application the full-support assumption does not always hold and
therefore we can have large belief distortions even as the proxy noise is close to zero.

5.2. Equivalence with self-confirming optimality
We define the conditions required for a strategy to be Self-Confirming Optimal below. The definition requires that the strategy
meets different conditions for actions that are in the support of the strategy and actions that are not. We define a system of beliefs

as a collection of conditional distributions g : X X.S. = A(Y), g = {q(.x,5.)}(xs,)exxs, € Q- Given a strategy o, define the strategy
conditional on the control signals as o (x|s.) =Y, ¢ o(x]|s,, 5p)P(s,)-
pS2p
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Definition 4. A strategy ¢* : S — A(X) is Self-Confirming Optimal if there exists a system of beliefs g € O such that

1. The beliefs are correct for actions and control signals that arise with positive probability under ¢*. At every (x,s,) such that
x € supp(c*(.|s,)), we have q(y|x,s.) = p(y|x,s,) forall yeY.
2. The strategy o* is optimal given beliefs g. At every s € .S, for any x € 6*(.|s) and x’ € X we have that

D ux, )%, 5) 2 Y u(y,x',9)a(y1x’,s5.) @1

yey yey

If there exists g € Q such that the first condition holds and (21) always holds strictly, we say that ¢* is strictly Self-Confirming
Optimal.

The strength of this condition varies with the utility function and the split between private and control signals. If payoffs are
such every action is a best response for some private signal regardless of beliefs, then only the strategies that are optimal against the
true conditional distribution are Self-Confirming Optimal. If any action can be sub-optimal at all signals for some beliefs, then the
condition is very permissive. We have the following result.

Proposition 6. If strategy o* : S — A(X) is Self-Confirming Optimal then for any n > 0 it is a Proxy Equilibrium under some proxy
mapping that is n-close to perfect.

Moreover, if ¢* is strictly Self-Confirming Optimal and supp(p(y|x,s)) =Y for all (x,s) € X X S, then for any n > 0 we can always
construct the Proxy Mapping under which ¢* is a Proxy Equilibrium such that the outcome variable is perfectly measured.

If 6* : S - A(X) is not a Self-Confirming Optimal strategy then there is an 7 > 0 such that for all n € (0,7) ¢* is not a Proxy
Equilibrium under any proxy mapping that is n-close to perfect.

Proof. In Appendix. []

Note that this result can be restated to say that: a strategy is Self-Confirming Optimal if and only if for any # > 0 it can be
implemented as a Proxy Equilibrium under some proxy mapping that is #-close to perfect. This can be seen by taking the contrapositive
of the last part of the proposition statement.

The first part of the result is proven by constructing a proxy mapping that is close to perfect measurement but has a small probability
of randomly allocating a particular realization of the true outcome variable to the proxy of an action-control signal combination that
has zero probability under the proposed equilibrium strategy. This small mismeasurement is chosen in a particular way to ensure
the DM is deterred from choosing actions that are not part of ¢* at that control signal. Under strict Self-Confirming Optimality, this
can be done in a way that ensures the outcome variable is perfectly measured. Thus many Self-Confirming Optimal strategies can be
implemented under conditions even stronger than close to perfect measurement.

The second part of the result follows from applying Proposition 5. The fact that the proxy mapping is close to perfect measurement
but not exactly perfectly measured is vital, there are in general Self-Confirming Optimal strategies that are not Proxy Equilibria with
exact perfect measurement.

We can apply Proposition 6 to our binary sports coach example from Section 2.2 to analyze what strategies can arise as Proxy
Equilibria for arbitrarily small measurement noise. This example is also used to illustrate how Proxy Equilibria that do not satisfy
Self-Confirming Optimality break down as measurement gets closer to perfect.

Example 1 (Continued). Let the payoff function of the coach be

u(y,x,s)=s(1—y)—x(1—ys)

This reflects that when the cost s is high, the coach has a greater payoff loss from player injuries. However, attacking tactics can only
benefit the team at points when injury costs are high enough. Assume that s =0 and 5> 0. Then we have ¢(0|s) =1 in any Proxy
Equilibrium. This is because at s = 0, defensive tactics x = 0 are a best response regardless of the beliefs of the DM about how x
covaries with y.

There are three cases at which different strategies are Self-Confirming Optimal.

1. If 5 €0, 2(+_ﬂ)) then we must have ¢(0|5) =1 in any Self-Confirming Optimal strategy. This is because at s = § the following

inequality must hold for x =1 to be a best response.

52— py(y=11x"= 1) = 1 251 = p,(y=1|x" = 0)) 22)

A strategy in which x =1 is chosen with positive probability at § is one in which both actions have some positive probability
for some signal s; 6(0) > 0 and (1) > 0. Self-Confirming Optimality then requires that both actions are optimal at some signal
against a system of beliefs that is correct. Since x = 1 is not optimal at any signal given correct beliefs if 5 € [0, ﬁ), we have
our claim.
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£ oo) then it must be the case that ¢(1]5) = 1. The argument is as follows: since o(1|s) = 0 always, we must have Self-

2. Ifse(—,

1-p

Confirming Optimality with respect to a system of beliefs for which p,(y =1|x* =0) =1 — f. Optimality of x =0 at s = § then
requires that for some beliefs p (y=1|x*=1) €[0,1]

5p252-p(y=1|x"=1)) -1 (23)

This is violated for any such beliefs if § > —

llﬂ'

3. Ifs5€e [2(+—m’ ﬁ], then strategies (c(15),0(1]s)) = (1,0) and (c(1]5),0(1]s)) = (0,0) are both Self-Confirming Optimal. The
first type of strategy can be implemented by the perfect measurement mapping, which is trivially arbitrarily close to perfect
measurement. When 5 € (2(+_ﬁ), ﬁ), the second type of strategy can be implemented by the following proxy mapping, which
has perfect measurement of the outcome

a(y' =y, x"=x|y,x)=1-n+nl-y)
a(y" =y, x" #x|y.x)=ny (24)
x*=0)= (=pd=n — B as > 0 tends to zero. This can

A=pA=n)+p

then sustain the proposed strategy as a proxy equilibrium as it satisfies inequality (23) for 5 € [0, ﬁ).

When 5= ﬁ we can implement the strategy with a proxy mapping that has imperfect measurement of the outcome variable.

This results in beliefs such that p, (y =1

x*=1)=land p,(y=1

.. 1 . . . 1 ..
x(y',x Iy,X)=(1—n+n5(1—X))11{y =y,x =x}+i1§xy

This mapping induces the exact beliefs p,(y*=1|x"=1)=1 and p, (3’ = 1|x" =0) =1 — g when (¢(1]5),o(1]s)) = (0,0).

Note how a Proxy Equilibrium that doesn’t satisfy the conditions for Self-Confirming Optimality will break down if the proxy mapping
is close enough to perfect measurement. For example, consider that 5 > ﬁ The proxy mapping (24) given in the third case can

sustain (o(1]5),o(1]s)) = (0,0) as a Proxy Equilibrium when

s(1-p,(y=1x"=0) 252 -p,(y=1|x"=1)) -1
d-pd-mn -

51 - ———— -1
=T pa—mep >°
5(1-p)—1
SCZPZ S
T OG-

Thus for small enough # > 0 this strategy cannot be sustained as a Proxy Equilibrium by proxy mappings of this form.
6. Related literature and variants
6.1. Relationship to Berk-Nash equilibrium

The Berk-Nash Equilibrium of Esponda and Pouzo (2016) gives a general solution concept for games in which players have to
form beliefs about a mapping between actions, a signal variable and outcome variables that may depend on the actions and signals of
multiple players. Each player has a set of subjective models over this mapping. Under the solution concept the beliefs of the players
have to be such that any subjective model that is in the support of belief of the player minimizes the Kullback-Leibler divergence
between the true distribution over outcomes and that projected by the model, weighted by that player’s signal and action probabilities.
This is then founded as the limit of a Bayesian learning process where the players have a prior with their set of subjective models as
the support. The true model that generates the mapping between the action, signal and outcome variables may not be in the set of
subjective models and thus players may have misspecified beliefs.

Proxy Equilibrium cannot be nested as special case of the exact version of Berk-Nash Equilibrium outlined in Esponda and Pouzo
(2016). However, it can fit as a variant of an extended version they discuss in the supplementary appendix of that paper. The version
of Berk-Nash Equilibrium in the main body requires that players perfectly observe the joint distribution of their signals, actions and
outcomes and that payoffs are only measurable with respect to these variables. If DM’s feedback consists both of perfectly observed
actions and signals and imperfectly measured proxies, the set of subjective models cannot contain models that put probability one on
the proxies being identical to the true variables. This is because the Kullback-Leibler divergence would not be well defined for that
model, as it would place zero probability on the event that the proxies and observed true variable realizations differ even though
they differ with positive probability.

If the only feedback agents receive is the distribution over proxies, then the Kullback-Leibler divergence is minimized at zero by
any model that implies the correct distribution over proxies. Since under Proxy Equilibrium agents are using such a model, their
beliefs are thus consistent with Kullback-Leibler divergence minimization.

To illustrate this further we can write a variant of Berk-Nash where players are not required to observe the true signal and action
distribution, and payoffs are not required to be measurable with respect to feedback. The space of all possible conditional beliefs
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{a1x,$)}yx.5erxxxs is denoted by O and denotes proxy variable realizations by w* = (y*,x", s*). Given an observed distribution
over proxies p, (¥, x’,s*), the set of conditional beliefs that are consistent with this feedback; M(p,), are those for which there exists
distribution over actions and signals j, and a proxy mapping 7, that would generate the same distribution over proxies.

M(p)={g€0 : 3.7t st V', p,(w') = Y q(ylx.$)BCx. )W’ |y, x,5)} (25)
y.x,5
Any subjective model that puts probability one on the distribution over feedback being p, is consistent with this version of
Berk-Nash Equilibrium, as the Kullback-Leibler divergence is then zero. Proxy Equilibrium would then be a selection from the set of
Berk-Nash equilibria where ¢ is chosen from M(p,) so that g(y|x,s) =p,(y" = y|x" =x,s5* =), p(x,5) =p,(x* =x,5* =5) and 7 is the
identity function.
Note that this variant of Berk-Nash is very permissive. In fact, for fixed p, any beliefs g € Q are also in the set of beliefs that can
be held in equilibrium; ¢ € M(p,). We can see this if we choose 7 (w"|y, x,s) = p,(w*) forall (y,x,5) EY X X X Sand w* €Y x X X S.
Proxy Equilibrium can significantly refine the set of possible beliefs held in equilibrium if we consider particular noise structures that
are neither implausibly far from correct measurement nor tailored to implement a particular strategy. For example, the symmetric
normally distributed or uniform window forms of measurement error in the applications in this paper.

6.2. Relationship to self-confirming equilibrium

Self-Confirming Equilibrium (SCE) originates from work by Fudenberg and Levine (1993), Battigalli (1987). Under this concept
players in a game only receive limited feedback on the equilibrium actions of other players and nature. Other work has that has
generalized the notion of limited feedback from these original papers includes Dekel et al. (2004), Battigalli et al. (2015), Fudenberg
and Kamada (2015), Fudenberg and Kamada (2018), Lipnowski and Sadler (2019) and Battigalli et al. (2019).

We have shown in Section 5 that when we consider only very small noise, Proxy Equilibrium is a refinement of a version of SCE we
call Self-Confirming Optimality. If all signals are control signals, s = s, then Self-Confirming Optimality coincides with the definition
of Self-Confirming Equilibrium defined in footnote 31 of Esponda and Pouzo (2016). However if there are private signal dimensions,
the definitions may differ. If x & 6(.|s.,s,) but x € 6(.|s.), Self-Confirming Optimality requires that beliefs are correct for (x, s, s,)
while Esponda and Pouzo (2016)’s definition of Self-Confirming Equilibrium puts no restriction on beliefs these actions and signals.

For general noise, a Proxy Equilibrium may not be Self-Confirming Optimal, as the ‘on path’ beliefs for x, s such that o(x|s)p(s) > 0
may be incorrect. The variant of Berk-Nash Equilibrium discussed above can also be considered as another variant of SCE. This variant
differs from Self-Confirming Optimality as due to the more limited feedback it does not require correct beliefs on-path.

6.3. Imperfect control

To illustrate the importance of the DMs imperfect equilibrium knowledge of the action distribution in Proxy Equilibrium, we
consider a variant in which actions are imperfectly executed and the intended action is used by the DM as the mismeasured proxy of
the actually implemented action. Unlike in Proxy Equilibrium, the feedback effects that can arise in this variant depend only on the
support of the equilibrium strategy.

In the context of the policing application, the interpretation would be that the municipality decides how many police officers to
hire but the actual number hired differs. The municipality then uses data on how intended hiring is jointly distributed with crime to
infer the effect of policing on crime.

Let x* be the proxy action chosen by the DM. Given a strategy mapping o(x*|s) and a distribution over signals s, we write the
distribution over proxy actions as 6(x") = ) ¢ 6(x"|s)p(s). The true action x € X is determined by proxy mapping 7(x|x") and the
distribution over perfectly measured outcomes is given by p(y|x).

We assume the DM can only observe the joint distribution over the proxy actions and the outcomes.

P (1. x) =0(x") ) 2(x|x")p(ylx) (26)

Given o(x") > 0, if the DM were to take the conditional distribution p,(y|x*) = Y. 7(x|x")p(y|x) as their beliefs, then if payoffs
only depend on the intended action, the outcome and the signal the DM’s beliefs coincide with rational expectations. Thus any two
strategy distribution with the same support over actions then result in the same beliefs. This differs from Proxy Equilibrium; consider
the beliefs obtained in Example 1, under which strategies with the same support over actions may result in different beliefs.

This carries over if we consider any selection from the set of beliefs consistent with observing the distribution of proxy actions
o(x*) and how they vary with outcomes. Let §(y,x|x") denote a conditional joint distribution over (y, x) and let O be the set of all
such distributions. Define the set of conditional joint distributions consistent with the observable distribution p, as

Mp)={G€0: Y 4 xIxVo(x") = po(3.x")} @7)

This set of beliefs is invariant to strategies with the same support; ¢, ¢’ such that o(x) > 0 if and only if ¢/(x) > 0. We can see this
by dividing both sides of ¥, 4(y. x|x")o(x") = p,(y.x") by o(x") > 0 as then M(p,) depends only on p,(y|x*) = X, #(x|x")p(y]x).
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6.4. Learning foundation

Since in Proxy Equilibrium agent’s naive belief that proxies are identical to true variables is dogmatic, it is unaffected by learn-
ing. Thus the main requirement for any learning foundation for Proxy Equilibrium is that the sample distribution over the proxies
eventually converges to the Proxy Equilibrium distribution.

If we have full support for the action and signal proxies for all strategies p,(x*,s*) > 0 for all (x*,s*) € X X.S and o, then a learning
foundation is simple. Since then no action-signal combination occurs with zero probability, standard law of large numbers arguments
would ensure convergence of beliefs.

This would hold for particular proxy mappings, or if we had a proportion of DMs forced to experiment with actions in the
learning model. Without these assumptions then any learning foundation would have to consider agents incentives to experiment as
in Fudenberg and Levine (2006), Fudenberg and He (2018). Such active experimentation could clash with the idea underlying the
concept that agents are short-lived and dogmatic in assuming that observed variables are not noisy.

6.5. Other related literature

The strand of literature that this paper is most clearly related to is that on equilibrium solution concepts with bounded rational
expectations. Work on using Bayesian Networks as a formalism to model causal misperceptions originating from Spiegler (2016) has
been developed to explore interactive beliefs in games (Spiegler, 2021); political narratives (Eliaz and Spiegler, 2020), (Eliaz et al.,
2024); persuasion (Eliaz et al., 2021); contract theory (Schumacher and Thysen, 2022) and deception (Spiegler, 2020). Other solution
concepts in this tradition include the Cursed Equilibrium of Eyster and Rabin (2005), the Behavioural Equilibrium of Esponda (2008)
and the Analogy Based Expectation Equilibrium of Jehiel (2005), Jehiel and Koessler (2008).

The Berk-Nash Equilibrium of Esponda and Pouzo (2016) nests many of these concepts and provides a foundation for the literature
on dynamic misspecified learning. Papers in the broader misspecified learning literature have explored overconfidence about one’s
ability; Heidhues et al. (2018), social learning; Bohren and Hauser (2021) and connections to Berk-Nash Equilibrium; Fudenberg
et al. (2021). In particular, the work of Frick et al. (2020) on fragile social learning has a similar flavor to our paper. They show
that arbitrarily small misperceptions about the distribution of other player’s types can generate large breakdowns in information
aggregation, similar to our results on arbitrarily small imperfections in proxies leading to large distortions in beliefs. A recent paper
by Bohren and Hauser (2024a) links the misspecified models approach to the literature on biased belief updating rules. An interesting
task for future work is to try and use their results to further analyze Proxy Equilibrium as a concept.

We can see this solution concept literature as modeling players whose actions contribute to an long-run steady state distribution
of the outcomes of past decisions in the same or similar situations. In contrast, there is a literature modeling players in games as
extrapolating from small samples of the equilibrium behavior of other players, the seminal work being Osborne and Rubinstein (1998)
and Osborne and Rubinstein (2003). Several recent papers developing similar ideas include Salant and Cherry (2020), Patil and Salant
(2024) and Gongalves (2023).

This paper also connects to a body of work on naive inference from selected observations as a form of decision making bias. This
models of sampling investors in Jehiel (2018) and elections with retrospective voters in Esponda and Pouzo (2017). Spiegler (2017)
explores a procedure in which an analyst extrapolates from a dataset with partially missing information. Fudenberg et al. (2024)
presents an equilibrium concept in which agents have selective recollection of their past experience. In all of these works, agents are
considering a partially missing distribution. Under Proxy Equilibrium, data is not fully missing but instead distorted by measurement
error.
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Appendix A. Appendices
A.1. Definition of proxy equilibrium for general spaces

Assume that each dimension of the variable space ¥ =Y X X X .§ C R"*2 has an appropriate topology such that it is a Polish
space.!! Given the variable space V, denote the Borel c-algebra of this space by B(V)= B(Y ® X ® S) = B(Y) ® B(X) ® B(S).'?
Denote any Borel subset by V=Y X &X' X S € B(V).

For any two measures i and g on measure space (Z,X), h is absolutely continuous with respect to g if for every A € X, g(A)=0
implies h(A) = 0. The two measures are mutually absolutely continuous if in addition for any A € X, h(A) =0 implies g(A) =0. If h is
absolutely continuous with respect to v then by the Radon-Nikodym Theorem there exists a X measurable function f : Z — [0, o)

11 E.g. the euclidean topology for a continuous space and the discrete topology for a finite space.
12 Since the variable spaces are Polish and thus second countable, the Borel product c-algebra is equal to the product of the Borel s-algebra for each dimension.
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such that forany A € Z, h(A) = / 1 fdg. Werefer to this function as the density of / with respect to g.'® Given measure spaces (Z,,%,)
and (Z,,X,), we define a Markov kernel as a function m : Z; X X, — [0, 1] such that for every A, € X,, the map z; = m(z, A,) is
measurable with respect to X, and for every z; € Z, the map A, — m(z;, A,) is a probability measure on (Z,, %, ). For ease of notation
from now on we denote such a Markov kernel by m : Z; — A(Z,).

Define the prior distribution over the signals by a probability measure Pg. Define the strategy as a Markov kernel ¢ : § — A(X).
The joint distribution of X X S is then given by

Py 5(X,8)= / 6(X|s)d Pg(s) 24
K
Define an outcome Markov kernel Py y ¢ @ X XS — A(Y). The joint distribution over ¥ x X X S is then

PY,X,S5)= / Py x s(Y|x,s)d Py s(x,s) (25)
XS

for any Borel set Y @ X ® S € B(V). Now define the proxy mapping as a Markov kernel 7 : ¥ X X X § - A(Y X X X §). Given the
true joint distribution over the variables, the joint distribution over the proxies is

P.(V)= / z(V'|y, x,5)d P(y,x,5) (26)
YXXXS
for any V* € B(V'). We assume that P, is mutually absolutely continuous with respect to o-finite measure y. This means that we can
define a density function p, such that p,(y",x",s) >0 for all (), x",s") €Y X X x S and P,(V") = [}, p,(v",x",s")dp. "
We can then define the condition beliefs of the DM under Proxy Equilibrium given the distribution over proxies p, as before using
(8). The perceived utility of an agent with signal s choosing action x is

Vi(x,s;0) = /u(y =y,% 89, (V' |x" = x,5" =s5;0)du(y") (27)
7

Whereas the expected utility of an agent who formed beliefs using the true variables would be

U(x,s):/u(y,x,s)dPy|X’S(y|x,s) (28)
Y

A.1.1. Equilibrium

We make the following technical definitions to facilitate the description of Proxy Equilibrium. We say a sequence of strategies
};?'; | converges to strategy & if for every s € S the sequence of probability measures {a(.ls)};?';1 converges in distribution to the
probability measure &(.|s). A strategy o that induces a belief density p,(y*,x",s"; o) induces a belief density that has full support if
p.(¥",x",5°;0) > 0 for any realization (y*,x*,s") €Y X X X §.

{o

Definition 5. Let o be a strategy mapping that induces a belief density that has full support. For every s € S define the following
set

X(S;O’Z)E {xeX: xﬁargmax/u(y=y',x,s)p,,(y'
v

X =x,5" =s5,0)du"))}
Then o7 is an e-Proxy Equilibrium if for every Borel subset X € B(X), X C X(s;0)), we have that ¢ (X|s) <e.

Definition 6. A strategy o™ is a Proxy Equilibrium if there exists a sequence {5} } 2, converging to ¢* as well as a sequence el >0,
such that for every /, o} is an €' -Proxy Equilibrium.

An analogous condition to requiring that z is minimally responsive for this general setting is to require that if the distribution
over the true variables P is mutually absolutely continuous with respect to o-finite measure y then P, is also mutually absolutely
continuous with respect to y. This then ensures that if P admits a full support density then so does P,.

13 Density is sometimes only used to refer to the Radon-Nikodym derivative when variables are continuous, here for convenience we use it for general variable
spaces.

14 That u(V) =0 implies P,(V) =0 for any ¥ € B(V') means we can define a measurable function j, : V — [0, o) such that P, (V) = /v p(v)du(v). Let A={ve
V . p(v)=0}. As P (V) =0 implies u(V) =0 and P, (A) = fA P, (0)du(v) =0 by definition, we have that u(A) = 0. Thus we can replace p,(v) with a full support
density p,(v) = max{p_(v),&} for any & > 0 such that P.(V) = fv p,(0)du(v) for any ¥ € B(V).
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A.2. Market entry without equilibrium

The following example demonstrates that without the equilibrium requirement, against an exogenous distribution the extent of
excessive entry can decrease with the bandwidth parameter.
Example 2. Let the function m(.) take the following form.

1k

2 1 ;
— -k if s€[0,a)
_ ) 1—k(x—a) 2
m(s) = %k+(x—a) 29)

m—%k ifse[a,l]

This function is increasing in the signal s and continuous. Assume the distribution over signals p(s) is uniform and the conditional
distribution p(.|s*,x = 1) is set exogenously to that which would be induced by the strategy o(x = 1|s) = 1 for all s. This means that
p(.|s*,x =1) is uniform in s € [s* — h, s" + h] for each s* € [h,1 — h] and uniform on s € [0, ) and s € (1 — A, 1] for s* € [0, h) and
s* € (1 — h, 1] respectively.

The perceived utility of entry at s € [h, 1 — h] is then /s S_Jrhh m(5)d35. This is increasing in s as m(.) is increasing in s. The cut-off 5(h)
5(h)+h

for which entry is a best response is given by /.

S(h—h m(3)ds =0. We can solve this to get

1. 1—expkh) + \/(h B %kl —exp(2kh) 5 1 —exp(2kh) B 1+ exp(2kh) T 30)

Sy =a—h+ ~ k— P
Sy =a—=h+ k= o exp(2kh) exp(2kh) exp(2kh)

We can find parameters for which there is over-entry but a lesser extent of over-entry when the bandwidth parameter is higher,
in contrast to Proposition 4. Let hA; = 0.1, hy = 0.125, a« = 0.5, k = —2. Then we have 5(h;) = 0.497 < a, 5(h,) = 0.499 < @, and
5(hy) < 3(hy).

A.3. Proofs
Proof of Proposition 1

Proof. Denote the set of all strategies conditional on signal s as X(s). For any £ > 0 we can define a strategy that has full support;
og(x|s) > 0 for all (x,s) € X X S. By the minimal responsiveness property of r, this means beliefs p,(.|x" = x,s* = s;6;) are well
defined for all (x,s) € X X.S. We can then define the following best response correspondence, given strategy 6; and £ > 0:

BR:(6;,5) = { argmax 2 o(x]|s) 2 u(y=y".x,8)p,(V'|x" =x,5" =5;6;) s.t o(x'|s) > ¢ Vx' € X}
o(|S)EZ(s) yex yey

Stack the best response correspondences into BR;(6) = Ies BR.(6,s). Since p,(y'|x" =x,s* = s;6) is continuous in & and the best
response correspondence is the set of maximizers over a compact set defined by a finite set of inequalities, BR;(6) is nonempty
for any 6. Moreover due to linearity in o(x|s), BR,(.) convex valued and continuity of p (y'|x* = x,s* = s5;6) implies BR;() has
closed graph. We therefore have met all the requirements of Kakutani’s fixed point theorem and a fixed point exists for any & > 0,
0';: S BRg(ag).

For any ¢ > 0, we can choose ¢ > 0 in such a way that ensures that our ¢-fixed point is an e-Proxy Equilibrium. For any s € .S and
o, define

X(s;0) = {x & argmax 2 u(y=y",x,8)p,'|x"=x',s" =s;0)}
x'ex yey
We have that ‘71:: (x|s) =€ for all x € X(s; 62‘). Therefore, we can choose & > 0 to ensure that ag (x]s) =& <€ for all s € S. This ensures
our fixed point, which we denote ¢, meets the definition of e-Proxy Equilibrium.
Since finiteness ensures the space of strategies X is compact, we can find a convergent sequence of e-equilibria as € — 0, ¢ —

o*. O
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Proof of Proposition 2

Proof. We first propose a general linear solution x(s) = 6, + 6 s, which is then used to calculate the perceived expectation E[y|x* = x]
using the properties of the normal distribution. Under the proposed best response function, the joint normal distribution of (y, x*) is

v\ 2wl @O0+ 0im) p0i02 +02  —poic?
X Oy + 0, 1, '\ -poie?  Ol6l+0?

Using this we can calculate the conditional expectation of y given x°.
2.2
00}

2.2 2
616S+66

Elylx’1=a— B(6y + 6y u,) — (x* =6 — 6y 15)

Using the utility function we then get perceived expected utility V (x, s;0) = —sE[y|x* = x] — %x2. Solving for a maximum then
polo? po20?

067 +02 Olog+ol
latter cubic equation to get the equilibria in the statement of the proposition. []

gives us x(s) = - 5. In order to have a linear equilibria, we must therefore have 6, =0 and 6, = We can solve the

Proof of Proposition 3

We use the version of Proxy Equilibrium defined for general spaces in Appendix A.1. The window form of proxy noise in the signal
can be described using a signal specific proxy mapping.

7, (s"|s) = ﬁﬂ{[s' € [max{min{s — &, 1 —2A},0}, min{max{s + ,2h},1}}1} (31)

Given y and x are perfectly measured, using the Dirac delta mapping z; for any Borel Set J* X X* X S* CY X X X .§ we can write
the proxy mapping
7Y XXX S|y, x,5)= /755()7' X Xy, X)m (s"|s)d (32)
S
The distribution over proxies then admits a density
p,,(y,x,S')=/frs(S'IS)p(ylx,S)G(XIS)p(S)dﬂ(S)
Ky

as using Fubini’s theorem and the definition of z5; we have that for any Y X X X S*
P (YXXXS")

=/[ / 75(Y X X |y, x)7 (s |$)p(y|x)o(x|s)p(s)d u(y, x, s)1d u(s*)
S* YXXXS

- / [ / 759 X X1y, ) 1x)0 (xl5)d u(y. 0T, (5" 5)p(s)d (™ 5)
S*xS YxX

= / [ / p(yIx, $)o(x|)d u(y, x)]zs(s*|s)p(s)d u(s®, s)
S°XS YxX

= / [ / 7y(s*|$)p(ylx, s)o (x|s)p(s)d u(s)ld u(y, x, s°)
IXXXS* S

= / Py, x,5)du(y, x, s°)
YXXXS*

Given an induced perceived distribution over the outcome variable p,(y|x, s*; 5), the DMs perceived expected utility is
V(x=1,s;0) =/yp,,(y|x =1,5"=s;0)du(y)
Y
=/y[/ pOlx=1,5p,(|x=1,5"=s;0)d u(5)]d u(y)

Y )

- / [ / o1 = Lo, Glx = 15" = 5:0)du(3)
S Y

422



A. Clyde
Games and Economic Behavior 153 (2025) 408-429

=/m(§)p,,(§|x =1,5"=s5;0)du(s) (33)
s
The perceived utility of x =0 at s is always zero; V' (x =0, s;0) = 0. We can see that the perceived utility depends on the distribution
p.(8|x =1, s* = 5;0) induced by the strategy o. From the distribution over proxies, this can be calculated as follows.

p(slx = 1,57 0) = 19D = 1)p(s) .

[s 7(s°19)a(x = 119)p()d pu(3)

We demonstrate the following fact which is used several times in the proof.

Lemma A.1. Let [ay, b;], [a,, b,] be intervals in [0, 1], with a; > a, and b, > b,. Then for any s| > s, we have that

1{sy €lay, b1} - 1{sy €lay, b1} 2 1{sy € [ay,b]} - 1{s) € [ay,b,]} (35)

Moreover, this inequality holds strictly if s; € [a;,b;]1\ [ay.by] or 55 € [ay,b,]1\ [a;,b;].
These facts also hold for half-open intervals [a;, b)), [a,,b,), (a;,b;] and (ay, b,].

Proof. For the right hand side of the inequality to be equal to one requires s, < s; < b, s, > a; > ay, §; > s, > a; and 51 < b, < b,
S0 §, € [ay,b,] and s; € [ay,b;] and the left hand side is also equal to one.
The second part of the result holds by definition and the third part is clear by applying the arguments above again. []

We can then show an increasing best response property.

Lemma A.2. Given a perceived distribution over outcomes induced by a full-support strategy o, we have that V (x = 1, s; o) is strictly increasing
inselh,1-h].

Proof. For a given induced distribution p,, we can use integration by parts to write the perceived utility of the DM as follows.
1 1
Vix=1,5,0)= / m(8)p,(ls*=s,x=1)du(8) =m(1) — / P,(5|s"=s,x=1)dM(5)
0 0

Where P, (3]s, x = 1) is the cdf of the induced distribution and M is the Lebesgue-Stieltjes measure satisfying M ((s;,s,]) =
m(sy) —m(s;) for any 0 < s5; < s;, < 1. Since m(.) is strictly increasing and right continuous, this measure exists. Therefore, to show the
result it is enough to show P,[(sls'l, x=1< P”(s|s'2, x=1)forany 1 —h > 57>, > h and all s, with strict inequality for all s in some
interval [a, b] C [0, 1]. Our assumptions about the conditional distribution of the proxies give us the following sequence of claims.

By Lemma A.1, we have that for any s} > s} and 1 —h>s; > 5, > h.

1{s] €[5y — hosy +h1} - 1{s] € [sy — h,sy + ]} 2 1{s} € [s; — h, s +h]} - 1{s} €[5, — h,5, + ]}

With strict inequality if 5] € [s; — h,s; + ]\ [s; — h, sy + h] or 5, €[5, — h, s, + A]\ [s| — h,s; + hl.
spGoG=lls) o=l
Do(x=119)7(s}1HduB)  [¢ pSo(x=1|9)a(s513)du($)’

Multiplying both sides by 7oK we can then write the following
S
P(sls],x = Dpr(sy1s5, x =1) 2 pr (5155, x = Dp, (5,157, x=1)
1 1

5 5
ﬁ'/p,,(s”s'l,x:l)dsl ~/p,,(52|s'2,x=l)dszzfpﬂ(s”s'z,x:l)dsl~/p”(52|s'1,x=1)ds2
s 0 5 0
= P (s|s],x=1) < P(s]sy, x=1)

for any s'1 > s'2 and s. By the strict inequality case above, we have that P”(s|s'1,x =)< P”(sls;,x =1) for any s € [s’1 —h, s'1 +hJu
[s'2 —h, s% + h]. This completes the proof. []

An outline of the proof is as follows. We first show why any Proxy Equilibrium with partial entry must have a cut-off structure, and
give a condition that the cut-off must satisfy in terms of perceived expected utility. We then show how we can construct a sequence
of e-Proxy Equilibria that converge to this cut-off structure.

We consider partial entry Proxy Equilibrium in which ¢(x = 1|s) > 0 at a strict subset of s € > C [0, 1]. For such an equilibrium
to exist, we must have a sequence of ¢/ -Proxy Equilibria, {c:‘, };2, that converge in distribution to it. Given we are considering partial

entry Proxy Equilibria, for large enough / we must have that the induced belief p; in the ¢/ -Proxy Equilibrium in the sequence is such
that U(s,x = 1; pﬁr ) <0 for all s € [0, ], and that x =1 is a best response to pﬁr for some s. By the fact perceived utility is increasing
in s € [h,1 — h], from Lemma A.2, and that a partial entry equilibrium must have no entry at some signal, there must be a cut-off
5 e [h, 1] such that a best response is x =0 for s € [0, 551] and x=1for s € (Eel, 1].
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By the definition &’-Proxy Equilibrium, we must have that oh(x=1]s) < ¢! for all s €[0,5¢] and o (x=1]5)>1- €' for all
s€E (551, 1]. The perceived utility of the DM at this cut-off 5¢ is then

1

3€ §€I+h
/ ms)— hﬂe(X=1|S)p(S) du() + / () — hcfe(X=IIS)p(S) du(5) =0
i ;1_; o.(x = 1[9)p(8)d u(3) el ;th o.(x = 1[8)p(3)d u(3)

Thus as / - o0, if our sequence of e-Proxy Equilibria converges it will converge to a Proxy Equilibrium with cut-off §* such that
o*(x=1|s)=0 for s € [0,5*] and o*(x = 1]s) =1 for s € (5%, 1]. The perceived utility at the cut-off 5* will then be
5+h
- p(3) “
/m(s)midy(s) =0 (36)

4 J5  p@®)du(s)

N

We then construct strategies that can form a sequence of e-Proxy Equilibria that converge to a partial entry Proxy Equilibria. These
strategies have a cut-off form where o:(x=1]s)=¢ € (0, %) for s € [0, 5] and os(x=1ls)=1-¢¢€ (%, 1) for s € (5, 1], with 5 € [0, 1]
as the cut-off. We can then define the following conditional density over s € [h, 1 — h] given s* =35.

. .. (=-51{5eB,5+hl)+E1{5€[5—h,5]}
g:(sls*=5)= o = p(3) (37)
(1=8) [ p&Ydu(S) + & [;_, p()du(8)
For any cut-off 5 € [h,1 — h] and k, we can choose:
~ k [ p3)du)
k [ pG)duG) + (1= k) [L, pG)AuE)

Which is arbitrarily small for small enough 1 > k > 0. This ensures that

¢, k)

(38)

k

P EGLK) [2, p(B)du()
/ g:Gls" = 9)du(®) = — . =
(=G, k) [ p®du() +EG, k) [, pE)du(3)

We can then write the perceived utility at 5 € [, 1 — h] against the beliefs induced by strategy o; ) with cut-off 5 € [, 1 — h] in
the following way

5—h

1
/ m(3)g(s.10Gls" =du®) =1 - UG, x = 1;5) + kUG, x = 1;5) (39)
0

Which is a linear combination of the terms

5+h
UG,x=1;5)= / m(§)§+h¢dﬂ(§) (40)
S [ p$)du(s)
Q(E,le;i)z/m(§)$dy(§) (41)
S p pPS)d u(d)

5—h

We show that (39) is strictly increasing in § € [h, 1 — h] by showing (40) and (41) are strictly increasing in 5.
Lemma A.3. The expressions E(E, x=1;5) and U (5, x = 1;3) are strictly increasing for all 5§ € [h,1 — h].

3 P L isel5.5+h7P(5) 1ise[s—h.51P(5)

Proof. We define densities g(s;5) = —SSlEothlZo _Lsels=h91722)
8(535) S5 p®)du(s) Jiip PR p($)

Lemma A.2, applied with indicator functions 1{s € (8,5 + h]} and 1{s € [§ — h,§]} instead of 1{s € [§ — h,§ + h]}, to prove the

result. [

and g(s;5) = . We can then use the same steps as in the proof of

With these results in hand, we can then both show existence of and characterize the equilibria for this application.
Proposition 3
Proof. Atany e-Proxy Equilibrium, the perceived utility of the DM is increasing strictly for s € [, 1 — h] by Lemma A.2. The structure
of the window form of proxy mapping means that the beliefs of the DM are identical on s € [0, 4]. If the DM is mixing o.(x = 1|s) > ¢

on s € [0, 4], then due to increasing expected payoff on s € [h, 1 — h], they must be playing o.(x =1|s)>1—eons e (h,1]. Ase >0
and o, — o their perceived utility at any s € [0, h] given potential equilibrium o is
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h 2h

[ o= POy [ i) L duts)
L o= ) o= 19p5)duG)

By the assumption that 4 < min{ %, 1%" } and m is increasing, the above expression is strictly negative. Thus for small enough ¢ at
any e-Proxy Equilibrium we must have o(x = 1|s) < € for s € [0, h].

From this argument and Lemma A.2, any e-Proxy Equilibria in which o(x = 1|s) > ¢ for some s must have some cut-off 5 € (h, 1]
such that o(x = 1|s) > € only if s > 5. The assumption /& < min{ %, la } means /11_ » m(s)p(s)d u(s) > 0 which ensures that any potential
equilibrium strategy with cut-off § > 1 — A will have o(x = 1|s) = | as a best response for all s € [1 — A, 1], and thus o(x =0|s) < € for
s €[l — h,1] in any e-Proxy Equilibrium.

We construct the following cut-off e-Proxy Equilibrium strategy. For any cut-off § € (h,1], € > 0 and k, € (0, 1), define &(5,k,) as
in (38). Let o.(x = 1]|s) =&(5,k,.) on s € [0,5] and o,(x = 1|s) =1 — &(5, k) on s € (§,1]. We choose k, > 0 small enough such that
€ > sUpsep1—p £(3, k). Then if we can find a 5* such that a best response to the beliefs induced by o, is 6(x =1|s) =0 on s € [0, 5]
and o(x =1|s) =1 on s € (5%, 1] we have an e- Proxy Equilibrium.

We have shown that the constructed strategy induces the beliefs at the cut-off 5 according to equation (39). We have also shown
in Lemma A.3 that this expression is strictly increasing in the cut-off § € [h,1 — h]. Moreover, we have that as € — 0, k. — 0, so this
expression converges to that in equation (36). We have (36) is strictly negative at § = h and strictly positive at § =1 — h. Thus we
can find a small enough e > 0 and hence k, > 0 such that fol m(3)gecs k) (Sls* = h)du(3) < 0 and /01 m($)gecs k) (Ss* = 1= h)du(3) > 0.

Since /01 m(§)g5(ik€)(§|s' = 5)d u(3) is continuous and increasing in 5 € [h,1 — h], we can find a 5§ = 5* at which it is equal to zero
by the intermediate value theorem. This 5* then gives us our e-Proxy Equilibrium cut-off as stated above. As ¢ — 0, we can find a
sequence of e-Proxy Equilibria of this form that converge to that in the statement of the proposition.

Next, for contradiction consider that 5* > a. We have shown the cut-off §* must solve the following equation.

§+h

UG x=1,5")= / m(§)M¢dﬂ(§) =0

F4 S P u(S)

Then we have U(§*, x =1;5%)> 0 as all the probability weight in the distribution is in s € [a, 1], a contradiction. Thus the cut-off
must be such that 5 < a.

For the final part of the proposition, we can always find a sequence of e-Proxy Equilibria that converges to a Proxy Equilibrium
with x =0 for all s € [0, 1]. For example, with small enough ¢ > 0 we can have an e-Proxy Equilibrium such that the DM plays x = 1
with probability € > 0 on [0, a) and probability €2 on [, 1]. This induces beliefs to which x = 0 is a best response for all 5. []

Proof of Proposition 4

Proof. We are comparing the cut-off equilibrium at 4, with the cut-off equilibrium at 4,. Consider the perceived utility at the cut-off
under the equilibrium with noise 4.

5(hy)+h;
= . () <
Ttpx=timy= [ n— D ———au)
O A QTVE)

As this is an equilibrium cut-off, we must have that

S(hy)+h; a
/ m(3)p(3)d u(3) + / m(3)p(5)d u(3) =0
a 5(hy)

If 5(h,) is fixed, then as h, increases to h,, the first part of this expression that has weight on the positive part of the function m(.)
increases while the second part stays fixed. Thus the perceived utility at cut-off 5(h;) when the perceived distribution is induced by a
strategy with cut-off 5(h,), must become positive at noise parameter s, > h;. We have that ﬁ(§(h1 ). x=1;hy) >0, ﬁ(hl ,x=1;hy)<0
and E(E, x = 1; h,) is continuous in 5 € [A}, 5(h,)]. Therefore by the intermediate value theorem we can find a new cut-off 5(h,) < 5(h)
that characterizes the positive entry equilibrium under noise parameter 4,. []

Proof of Proposition 5

Enumerate the control, action and the / — 1 control signals as 1, 2 and {3, ...,14+1} respectively. Then we can denote any subset of
the variable space M = {1,2,...,/+1} by N C M. We write the probability over the subset of true variables in N as p"V and the subset
of the proxy variables in N as pf;’ . For ease of notation in this section we suppress dependence of these distributions on the strategy
o. We can relate the distribution over all variables and the distribution over a subset N. The variable space containing the variables
in any subset N is denoted as Vy and the variables not in N by V_y. Denote x(wy, X {V_y}w) = I ev_y Ty, w” \|w) for
any w €Y X X X .S and remember that the perfect measurement mapping is such that (W, X {V_y}Hw)=UHw), =wy}.
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Py W) =pwy X (Voy = Y 2wy x (Voy Hw)p(w) (42)
WEYXXXZ

Lemma A.4. For any n > 0 and for any subset of the variables N C M, if the proxy mapping is n-close to perfect then

TV N, PN <TV M. pM) <1 (43)

Proof. We have that

TveN, )= @ (@) - pY ()
(AN AI:;‘VXNl,,EZ:‘,p a)—pN (@)l

= max | D, Y (msax (Voy}w) = xm@x {Voy }|w)p(w)|
A2V €A WEY XX XS

<max [ D (w@x (Vo) lw) = 2@x (V_p ) w)pw)]
A" iCAweY xXxS

=TV (M. p})

<max B N |mp@x (Vo |w) = 2@ x (Vg |10) p(w)
Ae2 GEA WEY XX XS

< 2 npw)=n O

WEY XXXS

Proposition 5

Proof. For any (y,x,s.) €Y X X XS, we have that |p(y,x,s.)—p,(¥,x,5.)| < TV(pM,pQ”) and for any (x, s.) € X XS, we have that
|pM (x,5) = pM (x,5)| < TV (pM, p2).
Therefore for any # > 0, by Lemma A.4 if 7 is #-close to perfect then |p(y,x,s.) — p,(y,x,s.)| <#n for all (y,x,5,) €Y X X XS,

2e0%5e) g (x,s,) € V*(0), by the algebra of limits we have the

and |p(x,s.) — p,(x,s.)| <nforall (x,s,) € X XS,. As p,(y|x,s,.) = )

result. [
Proof of Proposition 6
Proof. Given a prospective strategy o, X S:(a) ={(x,5.) € X XS, : o(x|s.)p(s.) > 0}. We first prove the following Lemma.

Lemma A.5. For any € > 0, we can find an n > 0 such that if x is n-close to perfect then

max | D u(y.x. 9)[p (v = ylx" =x.5" = 5:0) = p(ylx. 5,)l| < e
(X,5¢,5))EX ST (6)XS, =g

Proof. Define u=max, yexxsl| Zer u(y, x, s)|. If u =0 then Zer u(y,x,s) =0 for all (x, s) € X X S. By Proposition 5, for any ¢ > 0
we can find an 5 > 0 such that if 7 is n-close to perfect then max, . < \eyxxst) lp(ylx,s.) — p,(¥|x,s;0)| < e. When u =0, this then
implies

D U X )X, 5) =€) < D U X )P (Y = YIx = x5 = 530) < ) u(y, X, )PV, 5) + )

yeY yeY yeY
= D (% 9%, 5) < Y u(,x, 90" = lx' =x,5" = 5:0) < Y u(y,x, )p(ylx. )
yeYy yeY yeyYy

= ) u(y.x, )pylx.s) =€ < Y u(p, X, )p (V' =yIx* =x,5"=550) < Y uly,x, )p(ylx,5.) + e
yey yey yey
Therefore consider u > 0. Again by Proposition 5, for any % > 0 we can find an # > 0 such that if z is #-close to perfect then
max, s \eyxX S (o) lpylx, s.)—p,(¥|x,s50)| < % Then as required we have that for any (x, sc.sp) € XS:'(U) X Sp, as Zer u(y,x,s) <
u
z

yeY u(y, X, S) . . .
Ny x, )plx, ) — e T < Y u(y, X%, )p, (07 = yIx =x,5" =5:0) < ) u(y,x, $)pylx, 5.) + €
yey u yey yeYy

Zyey u(y,X,S)

= ) up,x, )plx,s) =€ < Yy, X%, )p, (0" = ylx =x,5" =5:0) < ) u(@,x,)pOlx,5)+e [
yeY yeY yeY
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<« (Necessity): We take a strategy o™ and show that if it does not satisfy the conditions to be Self-Confirming Optimal (SCO) then
for some # > 0 it cannot be a Proxy Equilibrium if the proxy mapping is #-close to perfect.

Clearly the second condition in the definition of SCO must hold for some beliefs g if ¢* is ever a Proxy Equilibrium. If at strategy
o™ the first condition is violated for any system of beliefs g satisfying the second condition, then either we have that for some (s, s,),
there are x € supp(c™(.|s,, 5p)) and x’ € supp(c*(.|s.)) such that

X u(y,x, 9)plx ) < Y u, X', )p(yIx,5)
yeY yeY

and/or there exists (s.,s,) € S, X S, x"* & supp(c*(.|s.)) and x* € supp(c*(.|s.,s,)) such that for all possible conditional beliefs
q(1x",s.)

Dy, X, )P, 5) < ) uly X", )a(yIx", s5,)
YeY yey

We show that neither of these cases can hold. To show the first case cannot hold, for given (x,x’ .S¢»5p) define A =
Zy€Y u(y, x', s)p(y|x', s.) — ZyGY u(y, x, s)p(y|x,s.). We have that A > 0 if we are in the first case. By Lemma A.5, we can find
n > 0 such that for any # that is n-close to perfect

A - . "
Z Uy, x, )pGylx.sc) + 7 > Z u(y, x, )p,(y =y'|x* =x,5" = 5107)

yeYy yeY

A e e
2 4 PO 50 = T < Y unx.)pe(y=yIx =x'.5" = 5107)
yeY yey

For ¢* to be implementable as a Proxy Equilibrium at z requires that

DU x, (=Y ¥ = x,5" = 5:6%) 2 Y u(y, X, )pe (v =y |x" = X', 5" = 5:0%)
yeY yeY

We combine this with the inequalities above to get a contradiction to the definition of A.

A
3> Xy, x pIxs) = Y u(y,x, )p(ylx,s)=A>0
yeY yey

For the second case, since Q(x", s,) the space of all possible conditional beliefs given (x"*, s.) is compact, we have that

E: min Z u(y, x"*, s)q(y|x"™, s,) — 2 u(y,x*, s)p(y|x®,s.) >0
qEQ(x’”,sC)er yeY

is attained. We then make the same argument as in the first step with & replacing A.
= (Sufficiency): For this part of the proof, we show that for any # > 0 we can find a proxy mapping that is # close to perfect such
that under the SCO strategy o™ the perceived beliefs ensure ¢* is a Proxy Equilibrium. This works because the perceived beliefs will
be sufficiently close to those conditional beliefs that ensure ¢* satisfies the SCO conditions.

We first show the sufficiency of a proxy mapping where outcome variables are perfectly measured, (21) is strict and
supp(p(y|x,s.)) =Y for all (x,s.) € X X S,. Denote the set of action and control signal combinations that are not in the support
of ¢* by

XS:S(O'*)= {(x,5.)€EX XS, : x¢&supp(c™(.|s.)}

The set of action and control combinations in the support is then denoted X S%(c*) = (X X S,) \ X S/*(¢*). Then for any (x"*,s.) we
find g € Q(x™, 5.), so as to satisfy (21) strictly. For any r € (0, 1), we construct beliefs for all (x,s.) € X S (c*)

. 1 1-r . 1
X,8.)=— X,8.) — X,8 )
q0lx, 50) = —p(ylx. sc) / D - q0lxse) XSm(om]
(x',sL)EX S (0%) ¢

For r close to 1, since p(y|x,s.) € (0,1) for all (y,x,s.) €Y X X X S, we have that §(y|x",s.) € (0,1) for all (x**,s.) € X X S.. To
implement these beliefs, we define the proxy mapping'®

GOlx".se)re™ (x*|sy)p(sy)
Z(ws0)exxs, POIES)o* (X15.)pGe

i (x',5)) € XS3(0%)

7.y =y,x", 8|y, x,5.)= ooy l-r
c(y Y. cly L‘) q(ylx ~Sc) |X.S‘C"X(zr*)|

if (x°,5%) € XS5 (o
S e, POTS o GGy L (X 80) € XS0

15 Since the proxy mapping is uninformative about s, € S, we can restrict focus on the proxy mapping over ¥ X X X .S,.
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»,x,5,.) =0. We can the see that by our definition of § that for any (y,x,s,) € Y XX X.S,, Zy.eY 7. (Y, X, sy, x,5.) >

with z.(y" # y,x", s,
0 and

D TGSy xs) = Y m =pxsyxs,)
VXS EY XX XS, (x*,52)EXXS,

A e oo ol . _ o gy L
rZ(x',s;)eXSCS(a*) 4(y|x*, sc)a*(x |sc)p(sc) (I-r) Z(X',sz)eXSE”(o'*) q(y1x°,s;) X570
2(2,§C)EX><SE p(y|%, 5. )0*(%|5.)p(5,) Z(g,gc)e)(xsc py|%, 5. )0 (%5,)p(5,)

=1

Thus we have that z, is a valid proxy mapping. For any # > 0 we can then define

(¥, X", s v x,5.) = (L= mas (v, X", s,y X, 50) + (v, x°, sg |y, x, 5.)
Clearly this proxy mapping is # close to perfect. This mapping induces conditional beliefs according to
P(yIx, 50 0%)
(1 =mp(y'Ix*, s;)o™ (x"|s3)p(s})
sOP(s) +1 2, m(x",501Y) X s yexxs, POIX s )o™ (x]s)p(s,)
N (X, 50 1Y) Xis e xxs, POIX, 50" (x]s)p(s,)
" (I =me*(x[s)p(s) + 1 Xy 7 (X", S0 1Y) X s yexxes, POIX, s)0* (x]5.)p(s,)

T (- o

: S ( Loy 1= m__ A : ns (-
Which means that for (x,s.) € X.S3(¢¥), p,(¥|x,s.;0%) = —(I_Wrmp(ylx, se) + T 4(ylx, s.) while for (x,s,) € XS!*(c*) we have

p(yIx,s.50%) = q(¥|x,s.). We can choose r close to one so that §(y|x, s.) is arbitrarily close to p(y|x,s.). Therefore by Lemma A.5,
we have that we can find r close enough to one such that ¢* is a Proxy Equilibrium due to the strict conditions (21).

Finally consider the case with only weak inequality and without full support. We can construct a proxy mapping that is #-close
to perfect in the same manner. Take any system of beliefs ¢ € Q satisfying the two conditions in the proposition statement. We can
write 7, as

(VX7 sy |y x,5) = g X7, s)P(x", 57)

with p as any joint distribution such that p(x’, s) > 0. The result then follows from the same construction as before with the changed

e O

T
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