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Abstract

There is evidence that people struggle to do causal inference in complex multidimen-

sional environments. This paper explores the consequences of this in a principal-

agent setting. A principal chooses a mechanism to screen an agent. The agent makes

choices on multiple dimensions, and infers the effect of each action separately with-

out properly controlling for the other actions. I characterize the principal’s optimal

mechanism when facing an agent who does such ‘narrow’ inference, and contrast

it with their optimal mechanism when the agent is fully rational. I show that the

principal can benefit from narrow inference, and identify cases where this holds.
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1 Introduction

Understanding the incentives we face requires understanding how the many choices we

make affect outcomes we care about. Consider the labour market: a worker has to form

beliefs about how their choices of effort, occupation and education affect their final wage.

This can require making sophisticated causal inference from any available data. Economic

models often assume that people form these beliefs and makes these choices jointly in one

over-arching decision problem. However, work in experimental economics suggests that

people both fail to consider their choices jointly and struggle to correctly infer the effects

of their actions1. In line with this, I formulate a model of bounded rationality in which

people form beliefs separately in a piecewise way for each decision they face. I call this

model of belief formation ‘narrow inference’.

Taking into account narrow inference matters for how we should design incentives.

Consider a policymaker who is determining how much to subsidize university education.

A worker has to decide whether to make human capital investments in education and work

experience. Assume that the workers beliefs about how these actions affect future net

earnings have to be consistent with actual data. A worker who makes narrow inference

forms beliefs the effect of education and work experience on earnings separately. In

using data to form beliefs about the effect of any individual action, they fail to control

for other dimensions of action. This leads to a confounding neglect bias that distorts

the worker’s perception of the size of earnings benefits of obtaining education and work

experience. The extent of this misperception affects how the policymaker wants to design

both education subsidies and earnings taxation.

In this paper I analyze such incentive design problems. I consider a principal-agent

screening model with a principal who has full understanding of their problem, but an agent

who only performs narrow inference. I explore how a principal would design an incentive

mechanism if they knew the agent had this form of bounded rationality. I obtain a

result characterizing the principal’s optimal mechanism with an agent who makes narrow

inference as the solution to a zero-sum game. I use this result to demonstrate in what cases

the principal benefits from the agent making narrow rather than fully rational inference,
1In the literature review I discuss work on ‘narrow bracketing’ from behavioural economics, and work

in experimental economics on correlation neglect and causal misperceptions.
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and in what cases the principal does not. I then explore what happens when the number

of dimensions of action grows large. In doing so, I obtain a result that demonstrates the

effect of narrow inference on agent’s perception of incentives in an optimal mechanism

can be quantitatively large.

In the screening model, the agent faces a binary decision problem on whether to take

an action or not on multiple dimensions. The principal chooses a function mapping the

agent’s actions to an outcome, and the agent needs to infer how their actions affect the

outcome. The principal’s choice of outcome function screens different types of agents

into choosing different actions. In the absence of bounded rationality this problem is

standard, with the outcome providing a zero-sum transfer of utility between the agent

and principal. The principal and the agent derive the opposite utility from the outcome,

and also derive a potentially different immediate utility from the agent’s actions that is

not mediated by the outcome. The immediate utility of the actions for both the agent and

the principal is additively separable across dimensions, but the principal can choose an

outcome function where there is an interactive effect. There is a large population of agents

who differ according to a single dimensional type variable that affects the immediate costs

and benefits of the actions. The principal’s choice of outcome function screens different

types of agents into choosing different actions.

An agent who makes narrow inference calculates the effect of each dimension’s action

on the outcome separately. Their beliefs about the effect of an action on a given dimension

must be consistent with data on the population level average outcome conditional on that

action. The difference between the average population level outcomes between any two

actions in a given dimension is then used to estimate the relative effect of each action

on the outcome. This is a naive way to estimate the ‘treatment effect’ of any action. It

can lead to incorrect expectations if the distribution over actions are correlated across

dimensions, something that is possible due to joint dependence on the type variable. The

estimated effect of the action on the outcome is then biased from confounding. This holds

even when the true outcome function is additively separable, as the inferential failure of

the agent involves neglecting the correlation in the data and not just in misspecifiying

the functional form of the outcome function.

In what follows, I develop the policymaker-worker example to illustrate narrow in-
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ference and to demonstrate how the principal might benefit from agents using narrow

inference.

Example 1. The agent has two dimensions of action, whether to obtain work experience

a1 = 1 or not a1 = 0 and whether to study at university a2 = 1 or not a2 = 0.

The principal, a policymaker, uses general taxation and a relative subsidy for education

to determine a future net earnings schedule that depends jointly on these two actions

t : A1 × A2 → R. There are three types of agent s ∈ {0, 1, 2}. The probabilities of the

types are denoted p0, p1, p2 ∈ (0, 1) respectively. The agent’s utility depends on their

type s , their actions a1, a2 and the outcome t .

t(a1, a2) – (3 – s)(a1 + a2)

Suppose that the principal wants to implement that the type s = 0 chooses neither

action, the type s = 1 obtains work experience a1 = 1 but not a university education

a2 = 0, while the highest type s = 2 obtains both a1 = a2 = 1. An outcome function

that implements this must satisfy the incentive constraints. The first ensures that type

s = 1 chooses (1, 0) over (0, 0) and the second ensures type s = 2 chooses action (1, 1)

over (1, 0).

t(1, 0) – 2 ≥ t(0, 0)

t(1, 1) – 2 ≥ t(1, 0) – 1

Choosing t such that these incentive constraints bind allows the principal to minimize

the earnings paid to types s = 1 and s = 2. This means t(1, 1) > t(1, 0) > t(0, 0). These

local incentive constraints binding suffices for all incentive constraints to hold.

Now consider if the agent used narrow inference. They expect the earnings from any

action to be the average population level earnings of those who have taken that action.

For an agent of type s = 1 making narrow inference to choose work experience thus

requires that
p1

p1 + p2
t(1, 0) +

p2
p1 + p2

t(1, 1) – 2 ≥ t(0, 0)

Since t(1, 1) > t(1, 0), this narrow perception of the expected earnings benefit of work
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experience is biased upward from the true effect. It fails to adjust for the fact that a

type s = 1 agent who is on the margin between obtaining experience does not obtain a

university education and thus has lower future earnings than the average.

Similarly for the type s = 2 agent to want to obtain an education under narrow

inference requires that

t(1, 1) – 1 ≥
p1

p1 + p0
t(1, 0) –

p0
p1 + p0

t(0, 0)

As t(1, 0) > t(0, 0), there perception of the earnings from not obtaining education is

biased downwards. The expected earnings for those who do not obtain education mixes

the earnings of those who get work experience and those who do not. It is therefore less

than the earnings obtained by the types on the margin of obtaining an education, type

s = 2, all of whom obtain work experience.

This upward bias in the incentives the agent perceives allows the principal to imple-

ment the same action choices for each type while obtaining higher tax revenue by reducing

net earnings across the type distribution.

My analysis of the design problem proceeds as follows. First, in order to contrast

the principal’s optimal mechanism when agents make narrow inference to that with

fully rational agents, I first state results describing the principal’s optimal mechanism

in the rational benchmark. This involves applying results in single-dimension monopolis-

tic screening problems adapted to the multidimensional action setting. Under a standard

regularity assumption, the principal’s optimal mechanism is fully separable across dimen-

sions. Facing such a mechanism, the agent chooses a strategy that on each dimension

selects the action if and only if their type is above a dimension-specific threshold.

I then obtain a result characterizing the principal’s optimal mechanism under narrow

inference. In this characterization, the principal plays a zero-sum game against an adver-

sarial player who can shrink the immediate utility from actions on any dimension by some

constant factor that lies between one and zero, with the shrinkage factors summing to

one across dimensions. The principal’s optimal mechanism under narrow inference then

solves the same problem as in the rational benchmark except with the shrunk immediate

utilities. The result allows us to both solve for the principal’s optimal mechanism for
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specific parameterizations, and also enables us to easily compare how the mechanism

differs from that with rational agents.

I show using the characterization result what effect narrow inference has on this

threshold strategy and on the principal’s welfare relative to the rational benchmark. This

involves considering two different cases; one where the agent’s actions have immediate

utility costs to the agent but benefits to principal on all dimensions, and one where all

actions have immediate benefits to the agents but costs to the principal. The first case

fits the policymaker-worker example, where human capital investments have costs to the

worker but social benefits for the principal. For an example that fits the second case,

consider an environmental agency that is designing regulations for a firm. The firm has

two divisions, and each division makes a production decision. The production also causes

a negative externality via pollution that the regulator wants to abate. The regulator

can tax production from each division separately. Although each division has the same

objective to maximize the overall profits of the firm, they make separate narrow inference

about how their own production decision affects the total production tax that the firm

has to pay.

In the case where actions immediately cost the agent but benefit the principal, when

facing the principal’s optimal mechanism the agent’s thresholds are lower under narrow

inference than when they are rational and the principal is always at least as well-off under

narrow inference. Lower thresholds mean a greater proportion of types take the action

on any dimension. On the other hand, when actions immediately cost the principal but

benefit the agent then thresholds are higher and the principal is always weakly worse-off

under narrow inference. These effects are the consequence of the agent overestimating the

causal effects of their actions on outcomes due to confounding bias. Taking the action on

one dimension is associated with taking the action on others, as both are chosen by higher

type agents, and when agents neglect this their estimates are biased upwards. I show that

the principal’s gains and losses from narrow inference are purely due to this confounding,

as under narrow inference the principal’s optimal mechanism has a separable outcome

function just as in the rational case.

The effect of narrow inference can be quantitatively large. Assume that the immediate

utility of the actions is identical across dimensions for both the principal and agent. In
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this case, under the principal’s optimal mechanism there is a single threshold above which

all types of agent take the action on all dimensions and below which they take no action

on any dimension. I show that if total immediate utilities are split over n dimensions,

there is a finite size of the dimensionality above which either all types of agents take the

actions on all dimensions, or no agents take the actions on any dimensions. In the first

case, the principal is able to implement this strategy at arbitrarily small cost in terms of

outcomes.

Finally, I explore extensions that vary the form of the participation constraints and

consider the consequences of dropping the regularity assumption. In the main model, I

assume the agent also makes narrow dimension-by dimension decisions on whether to par-

ticipate in the mechanism. This is motivated by an interpretation that non-participation

involves resorting to an outside option where the agent takes no action and obtains a

default outcome. The agent treats the non-participation decision as they treat decisions

within the mechanism. They believe that they can use the outside option narrowly, taking

it on some dimensions but continuing to participate in the mechanism on others. I con-

sider a version of the model where the agent instead perceives the participation decision

as a joint one, taking the sum of perceived narrow utility across dimensions as the value

of participation. I demonstrate how we can modify the characterization result under this

alternative participation constraint. The results on the principal’s welfare and on large

dimensionality still hold.

Literature Review

My paper builds on several distinct but related strands of literature. Experimental work

in psychology and economics documenting that people make inferential errors similar to

narrow inference. Enke and Zimmermann (2019) find subjects fail to adjust for correlation

between multiple information sources. Similar logic extends to predictive tasks, in He

and Kučinskas (2024) subjects’ forecasting performance deteriorates when information

from a single variable is split into two. Fernbach et al. (2010) present evidence suggesting

people focus narrowly on a few variables when trying to make causal predictions. In line

with this, Graeber (2023) finds subjects ignore the effect of variables that are not directly

involved in a predictive task despite these variables containing valuable information.
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Narrow inference involves causal misperceptions, but also thinking about decision

problems narrowly. The literature on narrow bracketing considers decision makers who

break decision problems into smaller sub-problems without accounting for how these de-

cisions interact in the larger joint problem. Work in this area; Tversky and Kahneman

(1981), Thaler (1985), Thaler (1999), Read et al. (1999), Rabin and Weizsäcker (2009),

has both documented evidence for and explored the theoretical implications of narrow

decision making. Recent work exploring theoretical foundations for narrow behaviour

includes Kőszegi and Matějka (2020), who use a model of costly information acquisition

to explain both mental accounting and naive diversification. Lian (2021) builds a theory

of ‘narrow thinking’, which models decision makers as playing an incomplete information

game between multiple-selves. In both these papers, narrow behaviour arises from coor-

dination frictions or costs for agents who have otherwise rational beliefs. Under the type

of narrow inference considered in this paper, the agent is able to perfectly coordinate

their actions, but has distorted expectations about the effect of actions due to having a

misspecified narrow causal model.

In modelling agents with narrow causal perceptions, this paper builds on work study-

ing decision making by agents using misspecified models of how action choices map into

consequences. There is a growing literature on the Berk-Nash Equilibrium of Esponda

and Pouzo (2016), a solution concept founded as the limit of a process of misspecified

learning; Heidhues et al. (2018), Frick et al. (2020), Bohren and Hauser (2021), Fudenberg

et al. (2021). Another connected literature is that on modelling causal misperceptions

using Bayesian Networks; Spiegler (2016), Eliaz and Spiegler (2020). Schumacher and

Thysen (2022) use this Bayesian Network approach in a principal-agent moral hazard

problem where the agent has causal misperceptions of how their actions map into output.

In Eliaz and Spiegler (2024) a Bayesian Network formalism is used to model the design

of narratives for misspecified news consumers by media organizations.

Earlier work on design when agents misperceive incentives by Rubinstein (1993) and

Piccione and Rubinstein (2003) explores monopolistic pricing when customers have a

coarse misperception of any pricing strategy. For more general settings, Jehiel (2005)

develops an equilibrium concept for extensive form games —Analogy Based Expectation

Equilibrium (ABEE)— in which players have coarse misperceptions of other players’
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strategies. The behaviour of the principal and the agent under narrow inference can be

formulated as an ABEE of an extensive form game, and I discuss this in more detail in

Section 5.3. The first papers to explicitly apply the ABEE concept to design problems

are Jehiel (2011) and Jehiel and Mierendorff (2024). In Jehiel (2011), an auction designer

manipulates bidders who do not perceive how the distribution of bids varies with different

auction formats and the identities of different bidders. Similarly, in Jehiel and Mierendorff

(2024) a proportion of bidders form beliefs about how signals of their own valuation of

an item vary with opponents bids in a way that neglects correlation between their own

signal and the signals of the other bidders.

In contributing to the small literature on mechanism design where agents use mis-

specified models, this paper also contributes to a larger literature on mechanism design

that takes into account agents’ limited rationality in a variety of other dimensions. A

detailed review can be found in Kőszegi (2014). This includes work in contract theory

(Eliaz and Spiegler, 2006), (Heidhues and Kőszegi, 2010), (Herweg et al., 2010) and op-

timal taxation (O’Donoghue and Rabin, 2006), (Spinnewijn, 2015), (Farhi and Gabaix,

2020), (Lockwood, 2020).

2 Model

An agent faces a multidimensional decision. Let A = {0, 1}n be the agent’s set of feasible

action profiles. I refer to i ∈ {1, .., n} ≡ N as a dimension, such that ai is the agent’s

action in dimension i . The agent has a type that lies in a bounded interval s ∈ S ≡ [0, 1].

This type is drawn from an atomless distribution that admits a density p(s) such that

p(s) > 0 for all s ∈ S . Denote the cdf of the distribution by P(s) =
∫ s
0 p(s̃)ds̃ .

The dimension i action ai generates an immediate utility vi (s)ai , where vi (s) is

strictly increasing, continuously differentiable in s and can be positive or negative. In

addition to the immediate utility, the agent receives utility from an outcome t that needs

to be inferred. The utility of an agent of type s , choosing action a with outcome t ∈ R is

u(s , a, t) =
∑
i∈N

vi (s)ai + t (1)
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The principal derives benefit/costs wiai from an action ai , where wi ∈ R. The outcome

t ∈ R represents a zero-sum transfer of surplus between the agent and the principal. The

principal’s payoff given actions a and outcome t ∈ R is

W (a, t) = –t +
∑
i∈N

wiai (2)

Throughout the paper, I make the following standard regularity assumption on the type

distribution. In Section 5.2, I explore the implications of dropping this assumption.

Assumption 1. For every dimension i ∈ N

ϕi (s) = vi (s) –
1 – P(s)

p(s)
v ′i (s)

is strictly increasing in s ∈ S . We refer to this property as increasing virtual values

(IVV).

2.1 Mechanisms

I focus on a natural class of indirect mechanisms. Before the agent takes any actions

the principal commits to a mechanism, which consists of a function mapping actions to

outcomes t : A → R. After learning their type, the agent chooses a distribution over

actions according to a strategy g : S → ∆(A). The marginal distribution over actions in

dimension i is denoted by gi (ai |s) = ∑a–i∈A–i g(ai , a–i |s).

For an outcome function t ∈ RA, given a strategy g the expected payoff for the

principal is

W (t , g) =
∫ 1

0

∑
a∈A

[–t(a) +
∑
i∈N

wiai ]g(a|s) p(s)ds (3)

The restriction to this class of mechanisms is simple to reconcile with narrow inference.

Under narrow inference, the agent perceives the outcome as measurable only with respect

to their own actions. Suppose the principal could choose a more general mechanism in

which the outcome function varied with an arbitrary message space as well as the actions.

The principal could present information on how the outcome varies with more finely

grained messages, drawing the agent’s attention to the joint multidimensional nature of
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their problem and undoing the narrow inference.

In Section 3, I show the restriction makes no difference to the analysis of the principal’s

optimal mechanism in the rational case. Under the optimal mechanism the agent chooses

a strategy that is deterministic, and as such can be implemented with an outcome function

that only depends on the chosen action. I consider a more general class of mechanisms

where the principal can force the agent to randomize over actions in Section 5.1.

2.2 Model Interpretations

The model allows actions to have both a positive and negative effect on payoffs. The sign

of vi (s) determines whether a type s agent has immediate positive utility from action

ai = 1 or immediate disutility. Likewise, the direct effect of actions on the principal’s

payoff can be positive (wi ≥ 0) or negative (wi ≤ 0).

The outcome function t can be interpreted as the division of the social surplus or costs

from actions. The total social surplus or costs of the actions a is given by ∑i∈N wiai .

The outcome function is then the share of that social surplus the agents receive, or the

share of the social cost they must bear.

This framework can capture the stories given in the introduction. Suppose the agent

is a multi-divisional firm and the principal a regulator. In this story, vi (s) > 0 represents

the immediate payoff benefit to the type s firm of producing output ai = 1, while wi < 0

represents the social cost of pollution caused by production. The regulator then chooses

a tax on production t .

In another story the agent is a worker and the principal a policymaker. Here vi (s) < 0

is the cost of studying or gaining work experience and wi > 0 is the ultimate social benefits

of the human capital the worker acquires. The policymaker then chooses a net earnings

schedule t , which they can determine using both general taxation and the relative tax or

subsidy on education.
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2.3 Rational Inference

Given a strategy g , write the expected utility of an agent of type s as

U (s) =
∑
a∈A

g(a|s)u(s , a, t(a)) =
∑
a∈A

g(a|s)[
∑
i∈N

vi (s)ai + t(a)] (4)

Incentive Compatibility (IC) of strategy g under outcome function t ∈ RA requires that

g is a best response to t . This means for any s ∈ S , a ∈ su p p{g(.|s)} and any a ′ ∈ A

∑
i∈N

vi (s)ai + t(a) ≥ ∑
i∈N

vi (s)a ′i + t(a ′) (5)

The agent always has the option of not participating in the mechanism, taking the actions

a = 0 and obtaining a baseline outcome. Normalize the utility of this baseline outcome

to zero. We then have the following participation constraint; for all s ∈ S

U (s) ≥ 0 (6)

2.4 Narrow Inference

Given a strategy g , an unconditional distribution over actions in A is induced as follows.

g(a) =
∫ 1

0
g(a|s) p(s)ds (7)

Let the marginal over an action in dimension i be denoted gi (ai ) = ∑a–i∈A–i g(ai , a–i ).

I use the terms action distribution and strategy interchangeably throughout the paper.

The agent forms narrow perceptions of the mechanism’s outcome function. In partic-

ular an agent believes when taking a decision in dimension i that in expectation they will

receive t i (ai ) if they take action ai . When gi (ai ) > 0 we require that this expectation is

consistent with the actual conditional expectation of outcomes given ai .

t i (ai ) =
∑

a–i∈A–i

g(ai , a–i )
gi (ai )

t(ai , a–i ) (8)

Denote t(a) = (t i (ai ))ni=1 ∈ Rn and t = (t(a))a∈A ∈ R2n . When gi (ai ) = 0,
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we allow t i (ai ) to take on arbitrary values. Analogously to the rational benchmark,

these ‘off-path’ actions do not affect the principal’s objective and t can be set to ensure

incentive compatibility. Henceforth, I refer to agents performing narrow inference as

‘narrow agents’.

A narrow agent imposes an additively separable form on their estimate of the outcome

function using t . This gives them the following perceived expected utility from strategy

g when they are of type s ∈ S .

U (s) = ∑
i∈N

∑
ai∈Ai

gi (ai |s)[vi (s)ai + t i (ai )] = ∑
i∈N

U i (s) (9)

Where

U i (s) = ∑
ai∈Ai

gi (ai |s)[vi (s)ai + t i (ai )] (10)

denotes the narrow perceived expected utility of type s in dimension i . A strategy g is

narrow incentive compatible (NIC) if for any dimension i ∈ N , type s ∈ S and actions

ai ∈ su p p{gi (.|s)}, a ′i ∈ Ai

vi (s)ai + t i (ai ) ≥ vi (s)a ′i + t i (a ′i ) (11)

On each dimension, there is a baseline outcome that the agent can always obtain even

when both not participating in the mechanism and taking the zero action. Normalize the

utility of this baseline outcome to zero. We then have dimension by dimension narrow

participation constraints ; for all s ∈ S , i ∈ N

U i (s) ≥ 0 (12)

This fits the following interpretation; the agent believes they can reject any additional

effect on the outcome resulting from participation in the mechanism separately on each

dimension, whilst still obtaining the effect from participation on other dimensions. This

is in line with the agent believing the true outcome function is additive. Although this

appears to add participation constraints relative to the rational benchmark, in practice
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it does not. In Section 3, I show that the outcome function in the principal’s optimal

mechanism with a rational agent is additively separable and thus also satisfies these

dimension-by-dimension constraints. I consider alternative participation constraints in

Section 5.1.

3 Rational Benchmark

With rational agents, we have a screening problem with a single dimension of type but

multiple dimensions of action. I restate existing results adapted to our setting2.

It will be shown that the agent’s strategy under the principal’s optimal mechanism

with rational agents takes a threshold form where there is a potentially different threshold

ŝi ∈ S on each dimension such that gi (1|s) = 1{s ≥ ŝi}. Let the vector of thresholds

across dimensions be denoted ŝ = (ŝi )i∈N ∈ Sn . We can characterize the principal’s

problem in terms of choosing these thresholds. Denote the value of the principal’s objec-

tive under threshold strategy ŝ by W (ŝ).

Proposition 1. Assume the IVV assumption holds. The principal maximizes their ob-

jective over all IC mechanisms that satisfy the participation constraint if and only if they

choose an outcome function implementing a threshold strategy that solves the following

problem.

max
ŝ∈Sn

W (ŝ) =
∑
i∈N

∫ 1

ŝi
(ϕi (s) + wi ) p(s)ds (13)

The principal’s value under an objective maximizing mechanism can be achieved by an

additively separable outcome function

t(a1, ..., an) = ∑
i∈N

t i (ai ) (14)

t i (0) = 0, t i (1) = –vi (ŝi ) for all i ∈ N (15)

Proof. In Appendix

Thus, the principal’s optimal outcome function can be treated as the sum of separate

outcome functions, one for each dimension. This does not result directly from IC, but
2In particular Proposition 3.1 of Carroll (2017).
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rather from the optimality for the principal of implementing a threshold strategy when

IVV holds. We will see in Section 5.2 that without IVV it can be optimal for the principal

to choose a non-separable outcome function, and that under such an outcome function a

non-threshold strategy is implemented and thus IC.

4 Narrow Agents

The solution to the principal’s design problem with narrow agents can be characterized

as a zero-sum game between the principal and an adversarial player. In this game,

the principal faces the same design problem as in the rational benchmark except the

immediate utilities are scaled by some factor βi ∈ [0, 1] in each dimension. The immediate

utility in dimension i is then βivi (s), and the scaling factors sum to one across dimensions

∑i∈N βi = 1. The principal chooses a mechanism to maximize their objective while the

adversarial player simultaneously chooses the scaling factors to minimize the value of

the objective. The result shows that the agent’s strategy and value of the principal’s

objective under the principal’s optimal mechanism with narrow agents coincide with

those that arise as the solution to this zero sum game with rational agents.

4.1 Main Characterization Result

The characterization result is stated as follows.

Theorem 1. Assume the IVV assumption holds. The principal maximizes their objective

over all NIC mechanisms that satisfy the narrow participation constraints if and only if

they choose an outcome function that implements a threshold strategy that solves

min
β∈[0,1]n :∑i∈N βi=1

max
ŝ∈Sn

W (ŝ ;β) = max
ŝ∈Sn

min
β∈[0,1]n :∑i∈N βi=1

W (ŝ ;β) (16)

with the value of the principal’s objective given by

W (ŝ ;β) = ∑
i∈N

∫ 1

ŝi
(βiϕi (s) + wi ) p(s)ds (17)

Proof. In Appendix
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To see some intuition for this result, consider the case with two dimensions and

symmetric immediate utility vi (s) = v(s) and principal’s direct utility wi = w from

actions across all dimensions i ∈ N . With a rational agent, from Proposition 1 the

principal’s optimum sets a threshold ŝ so that the action is taken on all dimensions for

all types above and the zero action is taken on all dimensions for all types below. From

Proposition A.2, this optimum is induced with an outcome function that is additive

and identical across dimensions t(a1, a2) = t1(a1) + t2(a2) and t1(1) = t2(1) = t̃(1),

t1(0) = t2(0) = 0. With a narrow agent, under the same strategy and outcome function

the agents double count the effect of each action on the outcome. In each dimension,

they believe that the outcome resulting from taking the action ai = 1 is 2 · t̃(1) and the

outcome resulting from ai = 0 is 0. This double-counting is the result of confounding

neglect; the agent fails to adjust for the fact that every type who takes action a1 = 1

also takes action a2 = 1. The principal then has to half the size of the the difference in

outcomes in order to maintain the same thresholds 1
2 t̃(1). This has the same effect as

scaling the immediate utilities down by 1
2 in each dimension when the agent is rational.

The result extends this logic to asymmetric cases. It allows us to both solve for the

principal’s optimal mechanism with narrow agents and also demonstrates the connection

between any given problem with narrow agents to the rational benchmark. I use the char-

acterization to obtain additional results. I give conditions under which the principal does

and does not benefit from facing narrow over rational agents, and how the implemented

strategy changes between the two cases. I then explore the effect of symmetric immediate

utility across dimensions and what happens when the number of dimensions grows large.

First, I present some preliminaries that are used in obtaining the characterization.

4.2 Preliminaries for Characterization Result

I first obtain a result characterizing how narrow expected utilities relate to the imple-

mented strategy. In particular we obtain a version of the envelope theorem for each

dimension separately. I then consider which beliefs can be induced by an outcome func-

tion. I show that beliefs must satisfy a statistical correctness constraint, and that for any

deterministic threshold strategy there is a valid additively separable outcome function

that induces beliefs such that the strategy is NIC.
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Since beliefs t can only depend on a, given a fixed strategy g we cannot necessarily

obtain any value of the narrow expected utility in dimension i ; U i (s) from (11). We say

that narrow expected utilities (U i (s))s∈S ,i∈N can be achieved given strategy g if there

exists an outcome function that induces beliefs t such that for each dimension i ∈ N and

every s ∈ S ∑
ai∈Ai

gi (ai |s)t i (ai ) = –vi (s)
∑

ai∈Ai

gi (ai |s)ai + U i (s) (18)

Lemma 1. A strategy g and narrow expected utilities (U (s))s∈S that can be achieved

given g are NIC if and only if

1. The strategy is monotonic on each dimension; that is for all i ∈ N we have that

∑
ai∈Ai

aigi (ai |s) (19)

is increasing in s ∈ S.

2. On each dimension i ∈ N , U i (s) is increasing in s ∈ S.

3. On each dimension i ∈ N , the following envelope condition holds for any two types

s , s ′ ∈ S

U i (s) = U i (s ′) +
∫ s

s ′
v ′i (z )

∑
ai∈Ai

aigi (ai |z )dz (20)

Proof. In Appendix

The requirement that an NIC strategy has increasing immediate utility in type sep-

arately on each dimension means that any deterministic strategy in an NIC mechanism

must have a threshold form. This differs from the rational case where a threshold strategy

is optimal for the principal under the IVV assumption, but is not an implication of IC.

It will be useful in characterizing the principal’s optimal mechanism under NIC to

show how beliefs and the outcome function relate for any fixed distribution over actions.

The following result shows when we can write the outcome distribution in terms of the

beliefs over the expected outcome in either dimension. It gives a standard statistical

correctness result that applies to beliefs formed using Bayesian Networks under perfect

Direct Acyclic Graphs (DAGs) (Spiegler, 2020).
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Lemma 2 (Statistical Correctness). Given any distribution over actions g, for any two

dimensions i , j ∈ N we have that beliefs t i , t j satisfy

∑
ai∈Ai

gi (ai )t i (ai ) =
∑

a j ∈A j

g j (a j )t j (a j ) (21)

Proof. Rearranging the expected outcome gives us the first part. For any i ∈ N :

∑
y
g(a)t(a) = ∑

ai
gi (ai ) ∑

a–i

g(ai , a–i )
gi (ai )

t(ai , a–i ) = ∑
ai

gi (ai )t i (ai )

This statistical correctness is necessary but not sufficient for an outcome function

to exist that induces given beliefs for a fixed strategy and action distribution. For an

example of beliefs that satisfy the statistical correctness constraint but cannot be induced,

consider the case with N = {1, 2} and g(1, 1) = g(0, 0) = 1
2 . If beliefs do not also satisfy

t1(1) = t2(1) and t1(0) = t2(0), then there is no outcome function implementing these

beliefs under this action distribution.

The principal’s objective can be written in terms of beliefs. This means it is useful to

work directly with beliefs rather than the underlying outcome function when we charac-

terize the principal’s optimal mechanism. Although the statistical correctness constraint

is not sufficient, I now show that any action distribution taking a deterministic threshold

form; gi (1|s) = 1{s ≥ ŝi} for some ŝi ∈ [0, 1] for all i ∈ N , can be made NIC by an

outcome function that is additive across dimensions.

Proposition 2. For any deterministic threshold strategy g, we can construct an outcome

function t that implements beliefs t so that g is NIC. The constructed outcome function

is additive; for any a–i , ã–i ∈ A–i we have that

t(1, ã–i ) – t(0, ã–i ) = t(1, a–i ) – t(0, a–i ) (22)

Moreover, any outcome function t̃ such that g is NIC can only differ from this additive t

at action combinations that do not occur under g; t(a) ̸= t̃(a) only if g(a|s) = 0 for all

s ∈ S.
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Proof. In Appendix

Proposition 2 means that if the principal implements a deterministic threshold strat-

egy, they have no payoff gain from implementing an outcome function that is not additive.

The principal can exploit two features of the narrow agents misperception, that they can

only perceive of the outcome function as additive and that their beliefs do not account for

confounding bias. The principal only exploits the second misperception: in Section 5.1.1

I show that only deterministic threshold strategies are NIC and in the proof of Theorem

1 the principal does not want to implement any other form of strategy even if they can

force the agent to randomize over actions.

The proof of Theorem 1 works as follows. First it uses Lemma 1 to write both the

principal’s objective and the statistical correctness constraint from Lemma 2 only in terms

of the strategy and the narrow perceived utility of the type taking action zero; U i (0).

It then shows that a minimax upper bound to this constrained problem is solved by

implementing deterministic threshold strategies on each dimension, with the β weights

in the proof coming from a rewriting of the Lagrange multipliers from the statistical

correctness constraint. Under IVV, we can apply a standard minimax theorem argument

to obtain a saddle point for this upper bound problem. Finally, we can show that we can

achieve this minimax upper bound with an outcome function that solves the full problem

using Proposition 2.

4.3 Effect of Narrow Agents on Principal’s Welfare

Using the characterization of the principal’s optimal mechanism, I obtain a result on how

the principal’s optimal thresholds differ when we move to narrow agents from the ratio-

nal benchmark. We see that when facing narrow inference, if actions have an immediate

cost to the agent but benefit to the principal, the principal implements a strategy with a

lower type threshold for taking the action on any dimension than in the rational bench-

mark. The opposite holds in the immediate utility benefit, principal’s loss case where the

thresholds are higher when the agent is narrow.

Proposition 3. Assume the IVV assumption holds.
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1. When for every i ∈ N we have wi > 0 and vi (s) ≤ 0 for all s ∈ S, then on each

dimension the objective-maximizing thresholds are weakly lower with narrow agents

than under the rational benchmark, so ai = 1 is taken by a larger proportion of

types for all i ∈ N .

2. When for every i ∈ N we have wi < 0 and vi (s) ≥ 0 for all s ∈ S, then on each

dimension the objective-maximizing thresholds are weakly greater with narrow agents

than under the rational benchmark, so ai = 1 is taken by a smaller proportion of

types for all i ∈ N .

Proof. In Appendix

The intuition for this result is as follows. When the agent’s action is costly in terms of

immediate utility, for any threshold strategy the principal transfers positive utility from

outcomes to the agent. The single dimension of type results in actions in one dimension

being positively correlated with actions on any other dimension. Since actions result in

higher transfers to the agent, this leads a narrow agent to overestimate the transfer they

will get from the principal. Rational agents adjust for the fact their type is on the margin

between taking an action or not, so will received a lower overall transfer than the average

obtained by agents taking that action. The overestimation of the transfer by narrow

agents means less transfer has to be given to higher type agents in order to implement

any given strategy. This reduces the marginal cost to the principal of implementing

that any given proportion of agents take the action on any dimension. Given the fixed

benefits of the actions to the principal, this lower marginal cost means they want a higher

proportion of agents to take the action.

When actions have an immediate utility benefit to the agent, the principal is a net

receiver of utility from outcome transfers from the agent. In this case the converse logic

holds as the principal has a lower marginal benefit from a higher proportion of agents

taking the action, but a fixed cost. This intuition also applies to the effect of narrow

inference on the welfare of the principal. With immediate utility costs to the agent,

under narrow inference any fixed strategy requires less transfer of outcome utility to the

agent, while with immediate utility benefits it requires more transfer to the agent. This

gives the following result.
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Proposition 4. Assume the IVV assumption holds.

1. When for every i ∈ N we have vi (s) ≤ 0 for all s ∈ S, the principal can obtain at

least as high an objective value when the agent is narrow compared to the rational

benchmark.

2. When for every i ∈ N we have vi (s) ≥ 0 for all s ∈ S, the principal obtains at least

as high an objective value in the rational benchmark compared to when the agent is

narrow.

Proof. In Appendix

4.4 Effect of Greater Dimensionality

I now consider what happens when the number of dimensions grows large, with symmetry

across dimensions. In this setting when actions have a direct benefit for the principal,

the principal is able to incentivize types to take the actions at vanishing cost. This is

because they only have to pay the transfer of utility from outcomes to the agent on one

dimension in this symmetric narrow agent setting. When actions have a direct cost to

the principal, the opposite is true and it becomes too costly for the principal to extract

transfers from the agent. In this case, narrow agents overestimate the cost to themselves

of taking the action for any given outcome function.

Define a symmetric dimension space of size n as follows. For any n, v (n)
i (s) = 1

n v(s),

and wi = 1
n w . Both immediate utility and the principal’s direct utility from actions are

decreasing as the dimensionality of the action space n grows, but such that the total effect

of actions ∑i∈N v (n)
i (s) = v(s), ∑i∈N w (n)

i = w is constant. Let ŝ(n)
i be the solution to

the principal’s problem with narrow agents when there is a symmetric dimension space

of size n.

Proposition 5. Assume the IVV assumption holds. Consider a sequence as n → ∞ of

symmetric dimension spaces of size n.

1. When w > 0, there exists an n such that for any n ≥ n, we have that the principal’s

optimal mechanism with narrow agents implements a strategy such that all types

take the action on all dimensions; for all i ∈ N , ŝn
i = 0.
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2. When w < 0, there exists an n such that for any n ≥ n, we have that the principal’s

optimal mechanism with narrow agents implements a strategy such that all types

take no action on all dimensions; for all i ∈ N , ŝn
i = 1.

Proof. In Appendix

The result follows from the logic discussed in the intuition for the characterization

result in Section 4.1. To implement symmetric thresholds, the principal must scale down

the outcome utility from taking the action on any dimension by 1
n relative to the rational

benchmark to maintain the same thresholds as narrow incentive compatible. As n grows

large, the contribution of the outcome to the principal’s utility then shrinks and the

outcome transfers to or from the agent become smaller. Eventually for some n, the direct

immediate utility to the principal dominates their objective. When w > 0 this means

they want all types of agent to take the beneficial action while when w < 0 they want no

types to take the action.

If we consider a variant of the multi-dimensional firms story then Proposition 5 pro-

vides a theory of organization design. Let the principal be the CEO or top management of

the firm. If divisions take actions that are costly to themselves but benefit the firms over-

all profitability, then under narrow inference the CEO benefits from splitting divisions.

Conversely, if the divisions take actions that benefit themselves but reduce profitability,

then the CEO would want to merge divisions under narrow inference.

4.5 Symmetric Immediate Utility

If the immediate utilities of each action to the agent are the same across dimensions, we

have that the threshold strategy implemented by the principal’s optimal mechanism has

an identical threshold in every dimension. This means the agent perfectly correlates their

actions across dimension; above some threshold type the agent chooses action ai = 1 for

all i ∈ N and below this threshold the agent chooses ai = 0. This contrasts with the

principal’s optimal mechanism in the rational benchmark, where the principal generally

implements thresholds that differ across dimensions even when immediate utilities are

symmetric.
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Proposition 6. Assume the IVV assumption holds. If immediate utility of the actions

is the same across all dimensions; vi (s) = v j (s) = v(s) for any i , j ∈ N , and either

1. For every i ∈ N , we have wi > 0 and v(s) ≤ 0 for all s ∈ S.

2. For every i ∈ N , we have wi < 0 and v(s) ≥ 0 for all s ∈ S.

Then the principal’s optimal mechanism with narrow agents implements a threshold strat-

egy such that for any two dimensions i , j ∈ N , ŝi = ŝ j .

Proof. In Appendix

The result holds because with symmetric immediate utilities, the narrow participation

constraints have to bind on all dimensions. The statistical correctness constraint then pins

down how the thresholds for each dimensions relate to each other, and this relationship

between thresholds does not depend on the principal’s direct benefits or costs from actions

on each dimension.

4.6 Illustrative Example

The following example illustrates the rational benchmark and the narrow agent results.

Example 2. A company has two divisions N = {1, 2}. Each division has a binary

action decision Ai = {0, 1}, corresponding to whether to produce output or not. The

profitability of production for companies varies with a uniformly distributed type variable;

s ∼ U [0, 1], P(s) = s . The divisions obtain the same profits from each unit of production

across dimensions; v1(s) = v2(s) = r · s with r > 0. Production causes potentially

different levels of pollution across divisions; w1 < 0,w2 < 0. However, the benefits of

production exceed the cost of pollution for the highest types; –w1 < r , –w2 < r .

For these parameters, we have that for each i ∈ N

ϕi (s) = vi (s) –
1 – P(s)

p(s)
v ′i (s) = r(2s – 1) (23)

We have increasing virtual values and the strategy implemented by the principal’s

optimal mechanism has a threshold form gi (1|s) = 1{s ≥ ŝ∗i } in each dimension, with
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thresholds

ŝ∗i =
1
2

–
wi
2r

(24)

This gives the principal objective value W rat = ∑i∈N r(1
2 + wi

2r )2

With an agent who does narrow inference, given β, the thresholds that solve the

problem ŝ∗(β) = arg maxŝ∈Sn W (ŝ ,β) are

ŝi (βi ) =


1
2 – wi

2rβi
if – wi ≤ βi r

1 if – wi > βi r
(25)

for i ∈ N .

When –(w1 + w2) ≤ r , we have that the value of the principal’s objective is

min
β∈[0,1]2,β1+β2=1

W (ŝi (βi ),β) = min
β∈[0,1]2,β1+β2=1

∑
i∈N

rβi (
1
2

+
wi

2βi r
)2

= ∑
i∈N

r
wi

w1 + w2
(
1
2

+
1
2
w1 + w2

r
)2 (26)

so βi = wi
w1+w2

(which verifies that –wi ≤ βi r for both dimensions) and the thresholds

in the objective maximizing strategy are

ŝ1 = ŝ2 =
1
2

–
w1 + w2

2r
(27)

When –(w1 + w2) > r , then ŝi = 1 for some dimension i . Without loss of generality,

let –w1 ≤ β1r , –w2 > β2r . Then we have

W (ŝi (βi ),β) =
1
4
(rβ1 + 2w1 +

w2
1

rβ1
) (28)

Which is minimized by β1 = min{1, –w1
r }, giving symmetric thresholds ŝ1 = ŝ2 = 1

and setting the value of the principal’s objective to zero.

This demonstrates how when we have symmetric immediate utilities across dimen-

sions, Proposition 6 applies and we have symmetric thresholds across dimensions. We see

also that the thresholds are higher with narrow agents, as Proposition 3 implies.

The welfare of the principal under narrow inference is then
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W nar = r(
1
2

+
w1 + w2

2r
)21{–(w1 + w2) ≤ r} (29)

Comparing with the principal’s objective value under the rational benchmark W rat in

Example 2, we see that it is lower with narrow agents than in the rational benchmark when

W nar ≤ W rat ⇔ w1w2 ≤
1
2r2. This always holds when –(w1 + w2) ≤ r , as the maximum

value of w1w2 subject to this constraint is r2
4 . When –(w1 + w2) > r the objective value

with narrow agents is zero which is again lower than the positive objective value than is

achieved with rational agents. This demonstrates Proposition 4.

5 Extensions

5.1 Alternative Participation Constraints

In this section I consider two alternatives to narrow dimension-by-dimension participation

constraints. I first analyze the consequences of an ‘ex-post’ participation constraint where

the agent can opt out of the mechanism after learning the true realization of their utility.

This can be interpreted as either the agent truly having an ex-post right to withdraw

from the mechanism, or that the principal has concerns for the welfare of the agent or

their own reputation that mean they do not want to reduce the true welfare of the agent

below a particular level.

Under this true welfare participation constraint (henceforth TWPC), the principal

can benefit from both committing to a non-separable outcome function and forcing the

agent to randomize over actions. This is because in combination they allow the princi-

pal to ‘redistribute’ the utility from outcomes between different types of agents without

affecting the narrow participation constraints, which can relax the true welfare participa-

tion constraint. This contrasts with the principal’s optimal mechanism under the narrow

participation constraints, where the principal optimally chooses an additive mechanism

and where we can show there is no benefit to the principal from forcing randomization.

I then consider a participation constraint that requires that the sum of narrow utilities

∑i∈N U i (s) is greater that the value of the outside option for all types s ∈ S . This is a
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relaxation of the narrow participation constraint considered earlier. I show how we can

modify the analysis of the principal’s optimal mechanism for this setting.

5.1.1 True Welfare Participation Constraint

Under TWPC, given a strategy g and an outcome function t we require that for all types

s ∈ S , for any a ∈ su p p{g(.|s)}

u(s , a, t(a)) =
∑
i∈N

vi (s)ai + t(a) ≥ 0 (30)

Now consider an extension of the basic model where the Principal can force randomization

by agents. They do this by forcing agents to choose from a restricted set of lotteries on

each dimension, Gi ⊆ ∆(Ai ). An outcome function t and strategy g are narrow incentive

compatible given restrictions (NICR) if there exist {Gi}i∈N such that for all i ∈ N and

s ∈ S we have that for any g̃i ∈ Gi

∑
ai∈Ai

gi (ai |s)[aivi (s) + t i (ai )] ≥

∑
ai∈Ai

g̃i (ai )[aivi (s) + t i (ai )] (31)

with gi ∈ Gi on all i ∈ N .

Clearly every NIC strategy is NICR, but there are NICR strategies that are not NIC.

I now show that any NICR strategy must take a random threshold form. A strategy has

a random threshold form if for all i ∈ N there exists a threshold ŝi ∈ [0, 1] such that for

almost every type s ∈ S , gi (1|s) = qh
i · 1{s ≥ ŝi} + q l

i · 1{s < ŝi}, where 1 ≥ qh
i ≥ q l

i ≥ 0.

This nests the concept of a deterministic threshold strategy as a special case with qh
i = 1

and q l
i = 0.

Lemma 3. Every NICR strategy g takes a random threshold form. Every NIC action

strategy takes a deterministic threshold form with qh
i = 1 and q l

i = 0.

Any strategy g that takes takes a random threshold form is NICR if there exists

an outcome function t and a set of restrictions {Gi}i∈N = {(qh
i , 1 – qh

i ), (q l
i , 1 – q l

i )}i∈N

such that t together with g induces beliefs that for all i ∈ N satisfy

t i (1) = t i (0) – vi (ŝi ) (32)
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Proof. In Appendix

In the example that follows, the principal can benefit from selecting a mechanism

with both a non-separable outcome function and that forces randomization by the agent.

This is something that is not the case for the narrow participation constraints considered

earlier. Under those constraints, the principal’s optimal mechanism can be implemented

with an additive outcome function and allowing NICR strategies does not benefit the

principal3.

For intuition, consider the case where N = {1, 2}. Focus on action distributions that

have full support; g(a) > 0 for all a ∈ A. Given g , for any action a ∈ A, denote the lowest

type choosing that action by s(a, g) = in f {s ∈ S : g(a|s) > 0}. This is well defined if

g has full support. Under a full support action distribution, there are multiple outcome

functions that can implement the same beliefs. We can write any outcome function that

supports beliefs t as

t(1, 1) =
g1(1)
g(1, 1)

t1(1) –
g2(0)
g(1, 1)

t2(0) +
g(0, 0)
g(1, 1)

t(0, 0)

t(1, 0) =
g2(0)
g(1, 0)

t2(0) –
g(0, 0)
g(1, 0)

t(0, 0)

t(0, 1) =
g1(0)
g(0, 1)

t1(0) –
g(0, 0)
g(0, 1)

t(0, 0) (33)

The principal can use the degree of freedom by selecting t(0, 0) to redistribute utility

between types taking action combinations that share an action in some dimension. For

example, the principal can equalize the welfare of the lowest types choosing (1, 0) and

(0, 0) by setting.

t(0, 0) = t2(0) +
g2(0)
g(0, 0)

v1(s((1, 0), g))

The outcome function that achieves this can be non-separable. I now demonstrate with

an example how under TWPC, the principal can benefit from this ‘hidden redistribution’

channel by selecting a mechanism that is both non-separable and induces a small amount
3The proof of Theorem 1 does not use the fact that g is restricted to being a deterministic threshold

distribution under NIC. Implementing a deterministic threshold distribution is optimal for the principal
in this case even when random threshold strategies are allowed.
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of randomization in the strategy.

I take the highest value of the principal’s objective that can be obtained from a

deterministic strategy under TWPC and show that under some parameters there is a

random strategy with a non-separable outcome function that betters it.

Example 3. Let the agent have actions N = {1, 2} that result in benefits to the principal

w1 > w2 > 0 but have a disutility cost. For this example, we assume the immediate

disutility cost are symmetric across dimensions v(s) = –r(1 – s), r > 0, and depend on

the uniformly distributed type variable s ∼ U [0, 1], P(s) = s .

Consider parameters w1 = 1,w2 = 0.3, h = 0.5. In Appendix A.3 we calculate if

the principal is restricted to implement a deterministic threshold strategy, they choose

thresholds ŝ∗1 = 0.2, ŝ∗2 = 0.6. Let W y (ŝ1, ŝ2) be the principal’s welfare if they imple-

mented a strategy with thresholds (ŝ1, ŝ2) and only had to consider the TWPC for the

worst-off agent choosing actions a. The principal objective value when all TWPC hold

at optimal thresholds (ŝ∗1 , ŝ∗2 ) is

min{W0,0(ŝ∗1 , ŝ∗2 ),W1,0(ŝ∗1 , ŝ∗2 ),W1,1(ŝ∗1 , ŝ∗2 )} = W1,0(ŝ∗1 , ŝ∗2 )

= min{0.6, 0.56, 0.64} = 0.56 (34)

Now consider what happens if we switch to a random threshold strategy g̃i (1|s) =

(1 – ϵ)1{s ≥ ŝ∗i } some ϵ ∈ (0, 1). Choose ϵ = 0.001, t(0, 0) = 0, and t(1, 0), t(0, 1),

t(1, 1) to satisfy the equations in (33). This is NICR as it induces beliefs such that

t1(1) – t1(0) = 0.4 = r(1 – ŝ∗1 ), t2(1) – t2(0) = 0.2 = r(1 – ŝ∗2 ). It also satisfies the true

welfare participation constraint; t(1, 1)–2r(1– ŝ∗2 ) ≈ 0.053, t(1, 0)– r(1– ŝ∗1 ) = t(0, 0) = 0,

t(0, 1) – r(1 – ŝ∗2 ) ≈ 13.11,

The value of the principal’s objective under this random threshold strategy is

– ∑
a∈A

g(a)t(a) + (1 – ϵ)((1 – P(s1))w1 + (1 – P(s2))w2) ≈ 0.573

This is greater than the highest objective value that can be obtained from a deterministic

threshold strategy. The outcome function is given by t(0, 0) = 0, t(1, 0) = 0.4, t(0, 1) ≈

13.31, t(1, 1) ≈ 0.453. Thus t(1, 1) – t(1, 0) ̸= t(0, 1) – t(0, 0) and unlike under the
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narrow participation constraints, the principal can benefit from choosing a non-separable

outcome function.

5.1.2 Sum of Narrow Utility Participation Constraint

Now I consider a participation constraint such that the agent’s sum of narrow utilities

across dimensions must exceed an outside option worth zero. That is, for all s ∈ S

∑
i∈N

U i (s) =
∑
i∈N

∑
ai∈Ai

gi (ai |s)[vi (s)ai + t i (ai )] ≥ 0 (35)

We call this a sum-narrow participation constraint. This constraint reflects that the agent

makes a joint decision across dimensions on whether to participate or not. The agent has

the option to take the zero action on all dimensions and reject any outcome given by the

mechanism. Under the sum-narrow participation constraint, the agent understands that

the outcome function may be interactive across dimensions and they cannot just reject

the outcome on each dimension individually. This contrasts with their beliefs formed

from narrow inference for different actions within the mechanism, which could be correct

only if the outcome function was additive.

I modify the proof of Theorem 1 to obtain the following result.

Theorem 2. Assume IVV holds. The principal maximizes their objective over all NIC

mechanisms that satisfy the sum-narrow participation constraint if and only if they choose

an outcome function that implements a threshold strategy that solves

max
ŝ∈Sn

W (ŝ ;β) = max
ŝ∈Sn

{ ∑
i∈N

∫ 1

ŝi
(
1
n
ϕi (s) + wi ) p(s)ds} (36)

Proof. In Appendix

The only subsequent result that doesn’t hold under sum-narrow participation con-

straints is Proposition 6. Propositions 3, 4 and 5 continue to hold, and their proofs

require no modification.
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5.2 Dropping the IVV assumption

I now explore what happens to the principal’s optimal mechanism without the IVV

assumption. I first present an example where IVV does not hold, and show the principal’s

optimal mechanism under the rational benchmark is no longer separable and no longer

implements a deterministic threshold strategy. Thus, since only deterministic threshold

strategies are NIC, we cannot make the same neat comparisons between the principal’s

optimal mechanism under narrow and rational inference that we made in Propositions 3

and 4. Without IVV, the fact that there are strategies that are IC but not NIC becomes

relevant.

However, despite the reduction in the set of strategies that are implementable we can

prove that an analogous result to Proposition 4 still holds. The principal is still always

better off when agents make narrow compared to rational inference if vi (1) ≤ 0, wi > 0

for all i ∈ N and the principal is restricted to implement a deterministic interval strategy.

In a deterministic interval strategy, for some k ∈ N there is a partition of the type space

z0 = 0 < z1 < ... < zk–1 < zk = 1 where for any s ∈ [zl –1, zl ) for l ∈ {1, ..., k} we have

g(a|s) = 1 for some a ∈ A.

Finally, I show how the characterization result Theorem 1 can be modified to deal

with the absence of IVV.

5.2.1 Example without IVV

There are two dimensions N = {1, 2} and the type distribution is uniform P(s) = s . Let

the immediate utility take the following form on either dimension, for some di , bi and

ri ∈ (0, 1)

vi (s) =


(di – bi )(1 – ri ) – di

2 (1 – s) – di–bi
2

(1–ri )2
1–s if s ∈ [0, ri )

– bi
2 (1 – s) if s ∈ [ri , 1]

(37)
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this has a continuous derivative equal to

v ′i (s) =


di
2 – di–bi

2 (1–ri
1–s )2 if s ∈ [0, ri )

bi
2 if s ∈ [ri , 1]

(38)

Assume that di (1– (1– ri )2)+bi (1– ri )2 > 0 and bi > 0 so that vi (.) is strictly increasing.

We can write the virtual values associated with these immediate utilities.

vi (s) –
1 – P(s)

p(s)
v ′i (s) =


(di – bi )(1 – ri ) – di (1 – s) if s ∈ [0, ri )

–bi (1 – s) if s ∈ [ri , 1]
(39)

These virtual values can be decreasing for some interval of types depending on the pa-

rameters. Let d1 = b1 = 0.54, r1 = 0.6, d2 = –0.12, b2 = 1.1, r2 = 0.66, w1 = 0.4266

and w2 = 0.32. I show that under these parameters the principal’s optimal separable

mechanism is dominated by a non-separable mechanism implementing a non-threshold

strategy.

First calculate the best case mechanism for the principal facing a rational agent if they

were restricted to separable mechanisms. For these parameters, the optimal thresholds

are interior and solve ϕi (ŝi ) + wi = 0 for i ∈ N .

ŝ∗1 = 1 –
w1
b1

= 0.21

ŝ∗2 = 1 –
w2
b2

=
39
55

The value of the principal’s objective under this mechanism is then W (ŝ∗1 , ŝ∗2 ) ≈ 0.215.

The following mechanism is better for the principal. It implements the deterministic

interval strategy g int

g int (a1, a2|s)

= 1{s ∈ [0, ŝ∗1 )}(1 – a1) · a2 + 1{s ∈ [ŝ∗1 , ŝ∗2 )}a1 · (1 – a2) + 1{s ∈ [ŝ∗2 , 1]}a1 · a2
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This gives the principal payoff

W (g int ) =
∫ ŝ∗1

0
(ϕ2(s) + w2) p(s)ds +

∫ ŝ∗2

ŝ∗1
(ϕ1(s) + w1) p(s)ds

+
∫ 1

ŝ∗2
((ϕ1(s) + w1) + (ϕ2(s) + w2)) p(s)ds

≈ 0.217

which is greater that the payoff from the best-case for a separable mechanism. The

strategy g int can be made both IC and to satisfy the participation constraint by the

following non-separable outcome function.

t(0, 0) = 0, t(0, 1) = t(0, 0) – v1(0), t(1, 0) = t(0, 1) – v1(ŝ∗1 ), t(1, 1) = t(1, 0) – v2(ŝ∗2 )

5.2.2 Welfare of the Principal without IVV

I now show that Proposition 4— which distinguishes cases where the principal benefits

from facing a narrow agent— also holds without the IVV assumption. In the case where

the principal is worse-off under narrow inference, the result is trivial as the principal may

now benefit from implementing a larger set of strategies in the rational case compared to

the narrow case. The interesting case is the one where the principal gains from narrow

inference, where actions have an immediate cost to the agent but a direct benefit to the

principal.

The proof for the second case works as follows. For a fixed interval strategy, for each

dimension i ∈ N take the lowest type s i that both takes the action ai = 1 and would

produce positive value to the principal if implemented as a threshold; (vi (s i ) + wi )(1 –

P(s i )) ≥ 0. We then take the dimension i∗ at which such a threshold has the greatest

cost to the principal in terms of the outcome function required for IC. We can obtain an

upper bound on the loss of payoff to the principal if they moved to a threshold strategy

where only the action on dimension i∗ is taken, and only by types above threshold s i∗ .

Under narrow inference, for exactly the same cost the principal has to pay to implement

this solo action strategy under the rational benchmark, the principal can implement a

threshold strategy where substantial payoff from other dimensions is obtained for free.
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The gain from this move to narrow inference exceeds the upper bound on the loss from

moving to the solo action strategy. This shows the principal’s payoff from any interval

strategy in the rational benchmark is lower that their payoff from some threshold strategy

under narrow inference.

Proposition 7. Assume the principal is restricted to implementing a deterministic in-

terval strategy

1. When for every i ∈ N we have vi (s) ≤ 0 for all s ∈ S, the principal can obtain at

least as high an objective value when the agent is narrow compared to the rational

benchmark.

2. When for every i ∈ N we have vi (s) ≥ 0 for all s ∈ S, the principal obtains at least

as high an objective value in the rational benchmark compared to when the agent is

narrow.

Proof. In Appendix

5.2.3 Minmax characterization without IVV

In this section I show how we can adapt Theorem 1 when IVV does not necessarily hold.

This works by applying the ironing procedure of Myerson (1981). Let P–1(s) be the

quantile function for the type distribution4. For any dimension i ∈ N and any x ∈ [0, 1],

define

Φi (x ) =
∫ 1

x
ϕi (P–1(u))du (40)

Let to(Φi ) be convex hull of the graph of Φi , the upper concave envelope of Φi (.) is then

defined as

Φ̂i (x ) = sup{z : (z , x ) ∈ co(Φi )} (41)

4This is the inverse of cdf P as P is strictly increasing, and thus P–1 is also strictly increasing.
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Then let ϕ̂i (s) = –Φ̂
′
i (P(s)), this is well defined and increasing for all s ∈ S by definition

of Φ̂i (.)5. For any β ∈ [0, 1]n and dimension i ∈ N , define the threshold6

ŝ∗i (β) = min{s̃ ∈ arg max
ŝi∈S

∫ 1

ŝi
(βi ϕ̂i (s) + wi ) p(s)ds}

and let ŝ∗(β) = (ŝ∗i (β))i∈N . We can now state the result.

Theorem 3. The principal maximizes maximizes their objective over all NIC mechanisms

that satisfy the narrow participation constraints if and only if they choose an outcome

function that implements a threshold strategy ŝ∗(β∗), where

β∗
∈ arg min

β∈[0,1]n :∑i∈N βi=1
∑

i∈N

∫ 1

ŝ∗i (β)
(βi ϕ̂i (s) + wi ) p(s)ds (42)

and the value of the principal’s objective is given by

Ŵ (ŝ∗(β∗);β∗) = ∑
i∈N

∫ 1

ŝ∗i (β∗)
(β∗

i ϕ̂i (s) + wi ) p(s)ds (43)

Proof. In Appendix

5.3 Connection to ABEE

It is possible to express behaviour under narrow inference as an Analogy Based Expec-

tation Equilibrium (ABEE) (Jehiel, 2005). Under ABEE, each player in a game has an

‘analogy partition’ of the set of histories where other players move. For any cell in the

partition, a player believes that the strategy of the other players is the average of the

true strategies for histories in that cell.

Take a game with n + 2 players; consisting of the principal, n different ‘selves’ of the

agent and a player of nature. Each of the n selves corresponds to one of the n actions

available to the agent, so that self i ∈ {1, ..., n} controls action ai . All selves share

identical preferences over the actions and outcome. The timing of the game is as follows;

5We have that by concavity Φ̂
′
i (P(.)) is defined for all but a countable set of points in S , and by

right continuity we can extend it to all S .
6This is well defined due to continuity of

∫ 1
ŝi (βi ϕ̂i (s) + wi ) p(s)ds.
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first the principal chooses an outcome function t . Then the common type of the agent’s

selves is drawn. After learning this common type then, moving in any order, each of the

n selves choose either an action from the set they control or to not participate in the

mechanism. Finally, the player of nature implements the outcome function chosen by the

principal.

Although each of the agent’s selves have common preferences, they differ according

to their analogy partitions. Each self partitions the history at which the player of nature

moves, with each cell in the partition corresponding to a different action chosen by the

self. Thus their beliefs about the expected outcome from each action is the average

outcome obtained among all types of agents choosing that action. This coincides with

the beliefs under narrow inference. Behaviour under narrow inference then coincides with

an ABEE of this multi-selves game.

6 Conclusion

This paper takes a step towards understanding how errors in causal inference might

affect how we should design economic incentives. I consider a model boundedly rational

belief formation I call narrow inference. I then explore the consequences of this model

for economic design. In Theorem 1, I show how we can solve for a principal’s optimal

mechanism when facing an agent who makes narrow inference, and how this mechanism

contrasts with the principal’s optimal mechanism when they face an agent who is fully

rational. I demonstrate how differences in the underlying environment affect both whether

the principal benefits or not from causal inferential errors and the shape of the principal’s

favoured mechanism. I also demonstrate the robustness of these conclusions to some

variations of the underlying model.

One can imagine many additional variations and extensions of the model of bounded

rationality explored in this paper. In particular, it seems interesting to consider how the

principal could shape the extent of agent’s departure from rational beliefs. For example,

the principal could provide data on how additional variables correlate with the outcomes

or otherwise frame the mechanism in a way that influences inference by the agent. The

analysis of this paper suggests that in some cases this could be as important a margin of
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design as the size of material incentives.

It could also be interesting to explore in other economic contexts the underlying idea

that people can have different mental models of the world for different decisions that they

face. People may not use the same underlying mental model for forecasting inflation as

they use for forming impressions about the economic competence of policymakers. Our

underlying ethical perspectives may differ in an inconsistent way when making choices in

the workplace vs when voting in elections.
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A Appendices

A.1 Rational Agents

We analyze the principal’s optimal mechanism in the rational benchmark. The next

result provides a standard characterization of all IC strategies and expected utilities. We

say that expected utilities {U (s)}s∈S can be achieved given strategy g if there exists an

outcome function t such that for every type s ∈ S , U (s) is the expected utility.

Lemma A.1. A strategy g and expected utilities {U (s)}s∈S that can be be achieved given

g are IC if and only if

1. Weak monotonicity condition: For any s , s ′ ∈ S

∑
i∈N

(vi (s) – vi (s ′))
∑

ai∈Ai

gi (ai |s)ai ≥

∑
i∈N

(vi (s) – vi (s ′))
∑

ai∈Ai

gi (ai |s ′)ai (44)

2. The expected utility U (s) is increasing in s ∈ S.

3. The following envelope condition holds for any two types s , s ′ ∈ S

U (s) = U (s ′) +
∑
i∈N

∫ s

s ′
v ′i (z )

∑
ai∈Y

aig(ai |z )dz (45)

Proof. For any types s , s ′ ∈ S , the rational incentive constraints (5) require that

U (s) ≥ U (s ′) + ∑
i∈N

(vi (s) – vi (s ′)) ∑
ai∈Ai

gi (ai |s ′)ai

Together with the IC from interchanging s , s ′ in the above, we get that the weak mono-

tonicity condition must hold. This then implies the second condition. Using the rewritten

ICs, the envelope condition holds from the Lipschitz continuity arguments in Theorems

1 and 2 of Milgrom and Segal (2002).

For the converse, the envelope formula implies reduces the rewritten IC for any s , s ′
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to the following

∑
i∈N

∫ s

s ′
v ′i (z ) ∑

ai∈Y
aig(ai |z )dz ≥ ∑

i∈N
(vi (s) – vi (s ′)) ∑

ai∈Ai

gi (ai |s ′)ai

which holds under the weak monotonicity condition.

As noted, a strategy where the expected utility of actions in individual dimensions is

non-monotonic in type can be IC as long as the weak monotonicity condition is satisfied.

This is in contrast to the narrow agent model where the action has to be monotonic

in type for each dimension. We shall see that under IVV, this does not matter as the

principal’s optimal mechanism implements a threshold strategy that is monotone on each

dimension anyway.

The example in Section 3.2 of Carroll (2017) shows that in we can have non-

separability in an optimal selling mechanism with a co-monotonic type distribution. This

is due to different monotonicity condition when we have multiple goods relative to when

we have a single good. With a single good, we have that under IC higher types must get

the good with higher probability, while with multiple goods we can trade-off probabilities

across goods without violating IC. In the example of Section 5.2.1, we show that this also

applies in our model when IVV does not hold.

We use Lemma A.1 to prove the next lemma, showing that any deterministic threshold

strategy can be implemented with an additively separable outcome function.

Lemma A.2. Let g∗ be a deterministic threshold strategy and U (0) be the expected utility

of the type s = 0. The strategy is IC and achieves the expected utility U (0) for type s = 0

under outcome function

t(a1, ..., an) = ∑
i∈N

t i (ai ) (46)

t i (0) =
1
n

U (0), t i (1) = –vi (ŝi ) +
1
n

U (0) for all i ∈ N (47)

Proof. Combining the envelope formula and the expression for expected utility gives us
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that the requirement for t to implement the correct expected utilities is

∑
a∈A

g∗(a|s)t(a) = – ∑
i∈N

∑
ai∈Ai

aig∗i (ai |s)vi (s) + U (s)

= – ∑
i∈N

vi (s) ∑
ai∈Ai

g∗i (ai |s)ai + ∑
i∈N

∫ s

0
v ′i (z ) ∑

ai∈Ai

aig∗i (ai |z )dz + U (0)

= ∑
i∈N

–vi (s)1{s ≥ ŝi} + 1{s ≥ ŝi}
∫ s

ŝi
v ′i (t)dt + U (0)

= ∑
i∈N

–1{s ≥ ŝi}vi (ŝi ) + U (0)

Since g∗i (1|s) = 1{s ≥ ŝi} we can write this in terms of actions as t(a) = ∑i∈N –1{ai =

1}vi (ŝi ) + 1
n U (0). The outcome function in the proposition function satisfies this and

achieves expected utility U (0) for type s = 0, so by Lemma A.1 we have the result.

A.1.1 Proof of Proposition 1

Proof. We can rewrite the principal’s objective (2) using the envelope formula (45) from

Lemma A.1 and the expression for the outcome function in terms of utilities in the direct
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mechanism.

W (t , g) =
∫ 1

0
∑

a∈A
[–t(a) + ∑

i∈N
wiai ]g(a|s) p(s)ds

= ∑
i∈N

∫ 1

0
∑

ai∈Ai

[aivi (s) + wiai ]gi (ai |s) p(s)ds –
∫ 1

0
U (s) p(s)ds

=
∫ 1

0
∑

a∈A
[aivi (s) + ∑

i∈N
wiai ]gi (ai |s) p(s)ds

– ∑
i∈N

∫ 1

0
[
∫ s

0
v ′i (z ) ∑

ai∈Y
aigi (ai |z )dz ] p(s)ds – U (0)

=
∫ 1

0
∑

a∈A
[s ∑

i∈N
vi (ai ) + ∑

i∈N
wiai ]g(a|s) p(s)ds

– ∑
i∈N

∫ 1

0
[
∫ 1

t
p(s)ds ]v ′i (z ) ∑

ai∈Ai

gi (ai |z )dz – U (0)

= ∑
i∈N

∫ 1

0
∑

ai∈Ai

[svi (ai )wiai ]gi (ai |s) p(s)ds

– ∑
i∈N

∫ 1

0
[1 – P(t)]v ′i (z ) ∑

ai∈Ai

gi (ai |z )dz – U (0)

= ∑
i∈N

∫ 1

0
∑

ai∈Ai

[ϕi (s)ai + wiai ]gi (ai |s) p(s)ds – U (0)

Where the first line follows from expressing the outcome function in terms of expected

utility and the last two lines follow from a standard switching of the order of integration

and rewriting in terms of marginal strategies.

Clearly it is optimal to set the expected utility of the lowest type to zero. We now

consider a relaxed version of the Principal’s problem where we ignore the weak mono-

tonicity constraints from Lemma A.1 and that expected utilities might not be achieved

given g . We show that under IVV, the mechanism that solves this relaxed problem imple-

ments a deterministic threshold strategy. Under a threshold strategy we have that for all

i ∈ N , ∑ai∈Ai aigi (ai |s) is increasing in type s . Thus the weak monotonicity condition

of Lemma A.1 is satisfied.

By Lemma A.2 we can find an outcome function that implements the threshold strat-

egy and achieves any given expected utility for the lowest type. Thus the solution to the
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relaxed problem coincides with the solution to the full problem.

max
gi∈∆(Ai )S

∫ 1

0
[

∑
i∈N ,ai∈Ai

(ϕi (s) + wi )aigi (ai |s)] p(s)ds

This problem can be solved pointwise by strategy gi (ai |s) = 1 if and only if ai ∈

arg maxãi∈Ai (ϕi (s) + wi )ãi . BY IVV, ϕi (s) + wi is strictly increasing in s ∈ S .

Thus either we have ϕi (ŝi ) + wi = 0 for some ŝi ∈ [0, 1], or either ϕi (s) + wi < 0

or ϕi (s) + wi > 0 for all s ∈ S . In the first case the maximizing strategy on dimension

i ∈ N is gi (ai |s) = 1{s ≥ ŝi}, where without loss of generality we set gi (ai |ŝi ) = 1 since

ŝi ∈ S has measure zero. In the other cases we can write the maximizing strategy as

having a threshold form with thresholds ŝi = 0 and ŝi = 1 respectively.

A.2 Proofs

I first present proofs for results that are not stated in the main body but are used in the

proofs for some of the results.

Lemma A.3

To obtain the principal’s optimal deterministic mechanism in Example 3, we use the

following lemma. Given a strategy g , let the set of all outcome functions that are NICR

be denoted MNICR(g). For any vector of reservation values t = (t i )i∈N ∈ Rn , denote

by MNICR(g , t) the set of all outcome functions t ∈ MNICR(g) such that the induced

beliefs satisfy t i (0) ≥ t i for all i ∈ N .

Lemma A.3. For a fixed random threshold strategy g, if MNICR(g , t) ̸= ∅ the principal’s

optimal outcome function in MNICR(g , t) results in objective value

max
c∈MNICR(g ,t)

W (t , g , S ) = min
i∈N ,ai∈Ai

{–t i + gi (1)vi (ŝi ) + ∑
j ∈N

g j (1)w j } (48)

Proof. The principal’s objective can be written in terms of the beliefs in any dimension
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i ∈ N .

W (g , t) =
∫ 1

0
∑

a∈A
[–t(a) + ∑

i∈N
wiai ]g(a|s) p(s)ds

= – ∑
ai∈Ai

gi (ai )t i (ai ) + ∑
j ∈N

∑
a j ∈A j

g j (a j )w j a j

= –t i (0) + gi (1)vi (ŝi ) + ∑
j ∈N

g j (1)w j

Therefore we want to set t i (0) as low as possible, which for a fixed dimension would

mean t i (0) ≥ t i . By Lemma 2, the statistical correctness constraint requires that for any

i , j ∈ N

–t i (0) + gi (1)vi (ŝi ) = –t j (0) + g j (1)v j (ŝ j )

This can be violated if we set tk (0) = tk for every k ∈ N . The principal cannot set

tk (0) = tk for any k ∉ arg mini∈N {–t i + gi (1)vi (ŝi )}, as then the statistical correctness

constraint requires that for any j ∈ arg mini∈N {–t i + gi (1)vi (ŝi )}

t j (0) = tk – gk (1)vk (ŝk ) + g j (1)v j (ŝ j ) < t j

violating the dimension j relaxed participation constraint. The statistical correctness

constraint can be satisfied by setting t j (0) = t j for any j ∈ arg mini∈N {–t i +

gi (1)vi (ŝi )}, in which case we have ti (0) ≥ t i for all i ∈ N \ { j }.

I now present proofs from the main body.

Proof of Lemma 1

For any dimension i ∈ N and any two types s , s ′ ∈ S NIC requires

U i (s) ≥ U i (s ′) + (vi (s) – vi (s ′)) ∑
ai∈Ai

aigi (ai |s ′)

From this we can obtain that the first two conditions are necessary. The envelope formula

on each dimension then holds via the usual Lipschitz continuity arguments as in Milgrom

and Segal (2002).
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Conversely, combining the envelope formula with the rewritten NIC gives

∫ s

s ′
v ′i (z ) ∑

ai∈Ai

aigi (ai |z )dz ≥ (vi (s) – vi (s ′)) ∑
ai∈Ai

aigi (ai |s ′)

which holds under the monotonicity condition.

Proof of Proposition 2

By the envelope formula (20) of Lemma 1, the beliefs inducing any deterministic threshold

strategy must satisfy

t i (1) = t i (0) – vi (ŝi )

for each dimension i ∈ N . Thus NIC and the thresholds pin down beliefs, and any

threshold strategy can be rendered NIC by some beliefs.

We now show that for any two action combinations that occur under a deterministic

threshold strategy, one of the action vectors is weakly larger on all dimensions than the

other, with strict inequality for one of the dimensions.

Lemma A.4. Let g̃ be a deterministic threshold strategy. Then for any s > s ′ and a ′′, a ′

such that a ′′ ̸= a ′, g̃(a ′′|s ′′) > 0 and g̃(a ′|s ′) > 0 only if a ′′j ≥ a ′j for all j ∈ N .

Proof. Since g̃ is a deterministic threshold distribution, for any two dimensions i , j ∈ N

there is an ŝi such that g̃i (1|s) = 1{s ≥ ŝi} and an ŝ j such that g̃ j (1|s) = 1{s ≥ ŝ j }.

Suppose for that we can find a ′′ ̸= a ′, g̃(a ′′|s ′′) > 0 and g̃(a ′|s ′) > 0 for some s ′′, s ′ ∈ S

such that a ′′i = 1 > a ′i = 0 for some dimension i ∈ N but a ′′j = 0 < a ′j = 1 for another

dimension j ∈ N \ {i}. But then s ≥ ŝi > s ′′ and s ′′ ≥ ŝ j > s , a contradiction.

This implies that the any two action combinations occurring with positive probability

under a threshold strategy can be ranked. Denote the set of all action combinations that

have positive probability under g by A(g) = {a ∈ A : ∃s ∈ S such that g(a|s) > 0}.

Denote the projection of A(g) on dimension i ∈ N by Ai (g). Define the order ≻ so that

a ′′ ≻i a ′ if and only if a ′′j ≥ a ′j for all j ∈ N with strict inequality for at least one such

j . By Lemma A.4 this is a strict total order.
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Given our NIC deterministic threshold strategy g , we enumerate the set A(g) =

{1, ..., |A(g)|} so that k > l means that for ak , a l ∈ A(g), ak ≻ a l . Now we can form

a partition of A(g) for each dimension i ∈ N . For each action ai ∈ Ai , define the set

Ai (ai ) = {(ai , ã–i ) ∈ A(g)}. This is a partition as ∅ ∉ Ai (ai ) for any ai ∈ Ai (g),

∪ãi∈AiAi (ãi ) = A(g) and Ai (a ′′i ) ∩ Ai (a ′i ) = ∅ for any a ′′i ̸= a ′i ∈ Ai .

We can then show that any action combination that occurs with positive probability

under an NIC deterministic threshold strategy must be maximal in the partition cell

according to the order ≻ for at least one dimension.

Lemma A.5. Given an NIC deterministic threshold strategy g, any a ∈ A(g) is such that

for at least one dimension j ∈ N , a = (a j , a– j ) ≻ ã = (a j , ã– j ) for all ã ∈ A j (a j ).

Proof. Suppose this does not hold, then for all i ∈ N , we can find a ã(i) ∈ A(ai ) such

that ã(i) ≻ a. The finite set {a(1), ..., a(n)} must contain a member that is minimal

in the strict total order ≻. Denote this element a(k) for some k ∈ N . Then on all

dimensions j ∈ N , a(k) j ≤ a j , as if a(k) j > a j then a( j ) ⊁ a(k) which would

contradict the minimality of a(k) in {a(1), ..., a(n)}. However, a(k) j ≤ a j for all j ∈ N

contradicts that a(k) ≻ a.

Now using this, for any action combination a l ∈ A(g) = {1, ..., |A(g)|} assign a

dimension π(l ) ∈ N so that a l ≻ ã for any ã ∈ Aπ(l )(g). Then we can recursively define

an outcome function t from the beliefs t that render g NIC. For any k ∈ {2, ...., |A(g)|}

t(a1) = tπ(1)(a
1
π(1))

t(ak ) =
∑a–π(k)∈A–π(k)

g(ak
π(k), a–π(k))

gπ(k)(ak
π(k))

tπ(k)(a
k
π(k)) – ∑

y∈Aπ(k)(ak
π(k))

g(a)
gπ(k)(ak

π(k))
t(a)

This outcome function is well defined as for any ak ∈ A(g) all a ∈ Aπ(k)(a
k
π(k)), t(a) has

been defined at an earlier stage as ak is maximal in ≻ on dimension π(k). Since a1 is

minimal in A(g), we have that a1 = Aπ(1)(a
1
π(1)), so the first equation is in fact a special

case of the second. We now show that t is additive for the action combinations a ∈ A(g)

at which it is well defined.
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Lemma A.6. For any a–i ∈ A–i with (1, a–i ), (0, a–i ) ∈ A(g), there exists no ã–i ̸= a–i

such that (1, ã–i ) ∈ A(g) and (0, ã–i ) ∈ A(g).

Proof. Suppose for contradiction that there is a ã–i ̸= a–i such that (1, ã–i ) ∈ A(g) and

(0, ã–i ) ∈ A(g). As we have strict total order ≻ on A(g), we have two cases. In the first

case (0, a–i ) ≻ (0, ã–i ). This means that a j ≥ ã j for all j ∈ N \{i} with strict inequality

for some such j . Then neither (0, a–i ) ≻ (1, ã–i ) nor (1, ã–i ) ≻ (0, a–i ), a contradiction

as Lemma A.4 implies since (1, ã–i ) ̸= (0, a–i ) they must be ranked.

Similarly if (0, ã–i ) ≻ (0, a–i ), then ã j ≥ a j for all j ∈ N \ {i} with strict inequality

for some such j . Then neither (1, a–i ) ≻ (0, ã–i ) or (0, ã–i ) ≻ (1, a–i ).

Therefore we cannot have t(1, a–i ) – t(0, a–i ) = t(1, ã–i ) – t(0, ã–i ) and

(1, a–i ), (0, a–i ), (1, ã–i ), (0, ã–i ) ∈ A(g). This means the outcome function is additive

for all a ∈ A(g).

We can additively extend the outcome function t defined above to all a ∈ A. For

any ã ∈ Y , ã ̸= a1 such that a1
j ≥ ã j , define t(a) = t(a1). For each dimension

i ∈ N , we will define t i (ai ) for each ai ∈ Ai so that t(a) = ∑i∈N t i (ai ). First set

t i (a1
i ) = 1

n t(a1) for all i ∈ N , and t i (1) = t i (0) if a1
i = 1. Now move through the

elements a l ∈ {2, ..., |A(g)|} ⊂ A(g) in ≻ order. If a l differs in one dimension j from

a l –1, then by Lemma A.6 there is a unique a– j ∈ A– j such that (1, a– j ), (0, a– j ) ∈ A(g),

and we can write t j (1) – t j (0) = t(1, a–i ) – t(0, a–i ). If a l differs from a l –1 on multiple

dimensions N l , choose one arbitrarily j ∈ N l and set t j (1) – t j (0) = t(a l ) – t(a l –1)

and set tk (1) = tk (0) for all other k ∈ N l \ { j }. For the remaining dimensions, which

are such that (1, a–i ) ̸= A(g) for every a–i ∈ A–i , set t i (1) = t i (0).

For the final part, any a ∈ A\A(g) is such that g(a) = 0 and thus t(a) does not affect

on-path beliefs t(ai ) = ∑a–i∈A–i
g(ai ,a–i )
gi (ai )

t(a). For all a ∈ A(g) and t ′ that implements

the beliefs t must match our recursive construction t . To see this take a1 ∈ A(g), at this

action combination t ′(a1) = t(a1) is pinned down by the beliefs only. This is because

a1 is the minimal action in A(g) according to ≻ but is also maximal in ≻ on one of the

dimension partitions, so on this dimension t ′(a1) and t(a1) must both be equal to the

belief. Then any expression that implements t for t ′(a2) is also pinned down in terms of

beliefs according to the recursive formula given for t(a2). Continuing up the order ≻, we
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have t ′(a l ) = t(a l ) for every a l ∈ A(g).

Proof of Theorem 1

We break the proof into 4 steps.

Step 1: We write the principal’s problem in a virtual value form. From the statistical

correctness constraint for any dimension i ∈ N we can write

∫ 1

0
g(a|s)t(a) = ∑

ai
gi (ai )t i (ai ) =

∫ 1

0
∑

ai∈Ai

t i (ai )gi (ai |s) p(s)ds

We then have for any i , j ∈ N that

∫ 1

0
∑

ai∈Ai

t i (ai )gi (ai |s) p(s)ds =
∫ 1

0
∑

a j ∈A j

t j (a j )g j (a j |s) p(s)ds

⇔
∫ 1

0
U i (s) p(s)ds –

∫ 1

0
vi (s) ∑

ai∈Ai

aigi (ai |s) p(s)ds

=
∫ 1

0
U j (s) p(s)ds –

∫ 1

0
v j (s) ∑

a j ∈A j

a j g j (a j |s) p(s)ds

We can then write the principals objective in terms of the perceived utility in one of

the dimensions, and then use the envelope formula to write in terms of the utility of the
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lowest type and the marginal strategy.

W (t , g)

=
∫ 1

0
∑

a∈A
[–t(a) + ∑

i∈N
wiai ]g(a|s) p(s)ds

= –
∫ 1

0
U i (s) p(s)ds +

∫ 1

0
vi (s) ∑

ai∈Ai

aigi (ai |s) p(s)ds

+ ∑
j ∈N

∑
a j ∈A j

w j

∫ 1

0
a j g j (a j |s) p(s)ds

= –U i (0) –
∫ 1

0
(
∫ s

0
vi (z ) ∑

ai∈Ai

aigi (ai |z )dz ) p(s)ds

+ ∑
ai∈Ai

∫ 1

0
vi (s) ∑

ai∈Ai

aigi (ai |s) p(s)ds + ∑
j ∈N

∑
a j ∈A j

w j

∫ 1

0
a j g j (a j |s) p(s)ds

= –U i (0) + ∑
ai∈Ai

∫ 1

0
(vi (s) –

1 – P(s)
p(s)

v ′i (s))gi (ai |s) p(s)ds

+ ∑
j ∈N

∑
a j ∈A j

w j

∫ 1

0
a j g j (a j |s) p(s)ds

Where we use a switch of the order of integration in the final equation. We can also use

the envelope formula to write the statistical correctness constraints for any i , j ∈ N as

– U i (0) + ∑
ai∈Ai

∫ 1

0
(vi (s) –

1 – P(s)
p(s)

v ′i (s))gi (ai |s) p(s)ds

= –U j (0) + ∑
a j ∈A j

∫ 1

0
(v j (s) –

1 – P(s)
p(s)

v ′j (s))g j (a j |s) p(s)ds

Step 2: We solve problem that is an upper bound to the principal’s full problem and show

that the solution to this upper bound implements a a deterministic threshold strategy.

The principal wants to maximize W (t , g) and must implement beliefs that satisfy

the statistical correctness constraints. The Lagrangian of the problem of maximizing

this objective given this constraint can be written as follows, remembering that ϕi (s) =

vi (s) – 1–P(s)
p(s) v ′i (s) and denoting Lagrange multipliers by λ j ∈ R for the j th of the n – 1

statistical correctness constraints
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W (g ,U (0), λ)

= –U i (0) + ∑
ai∈Ai

∫ 1

0
ϕi (s)aigi (ai |s) p(s)ds + ∑

i∈N
∑

ai∈Ai

wi · ai

∫ 1

0
gi (ai |s) p(s)ds

+ ∑
j ∈N \{i}

λ j [–U j (0) + ∑
a j ∈A j

∫ 1

0
ϕ j (s)a j g j (a j |s) p(s)ds

+ U i (0) – ∑
ai∈Ai

∫ 1

0
ϕi (s)aigi (ai |s) p(s)ds ]

= –(1 – ∑
j ∈N \{i}

λ j )[U i (0) + ∑
ai∈Ai

∫ 1

0
ϕi (s)aigi (ai |s) p(s)ds ]

+ ∑
j ∈N \{i}

λ j [–U j (0) + ∑
a j ∈A j

∫ 1

0
ϕ j (s)a j g j (a j |s) p(s)ds

+ ∑
i∈N

∑
ai∈Ai

wi · ai

∫ 1

0
gi (ai |s) p(s)ds

Note that we can write the n – 1 lagrange multipliers as β = (β1, ...,βn) ∈ Rn with

∑ j ∈N β j = 1 by setting β j = λ j for j ∈ N \ {i} and βi = 1 – ∑ j ∈N \{i} λ j . We can

use this to write a relaxed version of the principal’s problem

max
g∈∆(A)S ,U (0)∈Rn

min
β∈Rn ,∑ j ∈N β j =1

W (g ,U (0),β) subject to U j (0) ≥ 0 for j ∈ N

The problem is relaxed as it does not satisfy the following constraints that must hold in

the full problem. These are that the strategy must satisfy the monotonicity requirement

implied by NIC in Lemma 1. In addition since t only depend on actions, for a given

strategy g there might not exist a t inducing beliefs t such that any arbitrary expected

utilities U i (s) = ∑ai∈Ai gi (ai |s)[aivi (s) + t i (ai )] can be achieved.

We will show that the solution to the relaxed problem implements a strategy that has

a deterministic threshold form. Such a strategy satisfies the monotonicity requirement

and will be able to induce the expected utilities and beliefs in the solution. Thus both

type of additional constraints hold in the solution of the relaxed problem that ignores

them.

Restricting the domain of β so that β j ∈ [0, 1] for all j ∈ N in the minimization
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problem gives us the following upper bound.

min
β̃∈[0,1]n :∑i∈N β̃i=1

max
g∈∆(A)S ,U (0)∈Rn

≥0

W (g ,U (0),β)

≥ max
g∈∆(A)S ,U (0)∈Rn

≥0

min
β̃∈[0,1]n :∑i∈N β̃i=1

W (g ,U (0),β)

≥ max
g∈∆(A)S ,U (0)∈Rn

≥0

min
β̃∈Rn :∑i∈N β̃i=1

W (g ,U (0),β)

For fixed β ∈ [0, 1]n with ∑ j ∈N β j = 1, we have

W (g ,U (0),β) = ∑
j ∈N

[–β j U j (0) + ∑
a j ∈A j

∫ 1

0
(ϕ j (s) + w j )a j g j (a j |s) p(s)ds ]

The strategy g ∈ ∆(A)S that maximizes this expression must satisfy gi (ai |s) = 1 if and

only if ai ∈ arg maxãi∈Ai (βiϕi (s) + wi )ãi for every i ∈ N . As in Proposition A.2, this

strategy takes a threshold form WLOG and can be induced by the following beliefs that

give the correct expected utilities. Given a dimension i ∈ N , and threshold ŝi ∈ [0, 1]

the following beliefs implement the truthful reporting for the threshold strategy g .

t i (0) = –U i (0)

t i (1) = t i (0) – vi (ŝi )

By Proposition 2, we can construct an outcome function t that implements these beliefs

given the threshold strategy.

Step 3: We show that the objective function in our upper bound problem satisfies the

conditions of the minimax theorem. This allows us to interchange the min and max

operator and means we have a saddle point solution.

Denote the vector of thresholds by ŝ = (ŝi )i∈N ∈ Sn . We can now write the objective

in terms of the thresholds.

W (ŝ ,U (0),β) = ∑
j ∈N

[–β j U j (0) +
∫ 1

ŝi
(ϕi (s) + wi ) p(s)ds

Define the quantile function P–1(s). Since P(s) is strictly increasing, this is just
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the inverse and is also strictly increasing. For any vector x ∈ [0, 1]n , we can write

P–1(xi ) = ŝi . We use this to rewrite the objective using substitution.

W (x ,U (0),β) = ∑
j ∈N

[–β j U j (0) +
∫ 1

x j

(ϕ j (P–1(u)) + w j )du]

Taking derivatives of
∫ 1
x j

(ϕ j (P–1(u))+w j )du with respect to the threshold x j gives

–(ϕ j (P–1(u)) + w j )

By the IVV assumption, this is decreasing and thus
∫ 1
x j

(ϕ j (P–1(u)) + w j )du is

concave. We have that –β j U j (0) is also concave. The sum of concave functions defined

on different domains is also concave. Thus for fixed β, W (x ,U (0),β) is concave in U (0)

and the quantiles x . Since W (x ,U (0),β) is convex in β for fixed U (0), x we can apply

the minimax theorem (Sion, 1958) and obtain saddle point values (U (0)∗, x∗,β∗).

min
β∈∆(N )

sup
x∈[0,1]n ,U (0)∈Rn

≥0

W (x ,U (0),β) = W (x∗,U (0)∗,β∗)

= sup
x∈[0,1]n ,U (0)∈Rn

≥0

min
β∈∆(N )

W (x ,U (0),β)

Using xi = P(ŝi ), we then have

min
β∈∆(N )

sup
ŝ∈Sn ,U (0)∈Rn

≥0

W (ŝ ,U (0),β) = W (ŝ∗,U (0)∗,β∗)

= sup
ŝ∈Sn ,U (0)∈Rn

≥0

min
β∈∆(N )

W (ŝ ,U (0),β)

for some saddle point (U (0)∗, s∗ = P(x∗),β∗).

Step 4: We can show we can attain the value of the upper bound in the full problem by

the following argument. Take the saddle point β∗. If β∗
i > 0 we must have that when

comparing the dimension i and any other dimension j that

–U i (0) +
∫ 1

ŝi
(vi (s) –

1 – P(s)
p(s)

v ′i (s)) p(s)ds ≤ –U j (0) +
∫ 1

ŝ j

(v j (s) –
1 – P(s)

p(s)
v ′j (s)) p(s)ds
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So that the dimension i term is minimal. At the solution the dimension i participation

constraint binds U i (0) = 0 as otherwise the principal could increase the value of the

objective by reducing U i (0). If β∗
j > 0, then we have that this inequality must hold

with equality with U j (0) = 0, which means the statistical correctness and participation

constraint hold. If β∗
j = 0, then we can increase the value of U j (0) without affecting

the principal’s objective value. From the above inequality, this can be done so that

the statistical correctness constraint holds without violating the participation constraint.

Thus the solution for the upper bound can be be attained by a NIC strategy and t that

satisfy the statistical correctness and participation constraints, and therefore solves the

full problem. As β∗
i > 0, we have that U i (0) = 0 so the equality can be achieved with

bounded U (0). Therefore we can replace the supremum with a maximum in the saddle

point problem.

Proof of Proposition 3

For every i ∈ N , let ŝrational
i be the threshold such that gi (1|s) = 1{si ≥ ŝrational

i } is

the strategy that solves the principal’s problem in the rational benchmark. Let ŝnarrow
i

be the solution to the principal’s problem a narrow agent, as given by the solution to the

minimax problem in Theorem 1. Let β∗ be the saddle point distribution over dimensions

from that problem.

When vi (1) ≤ 0 we have ϕi (s) = vi (s) – 1–P(s)
p(s) v ′i (s) ≤ 0 for all s ∈ [0, 1], then

ϕi (s) + wi ≤ β∗
i ϕi (s) + wi . Suppose that for some dimension j ∈ N we have ŝnarrow

j >

ŝrational
j . Optimality of ŝrational

j as a threshold implies ϕ j (s) + w j > 0 for all s ∈

(ŝrational
j , 1]. However, then ŝnarrow

j > ŝrational
j cannot be optimal for the principal as

0 < ϕ j (s) + w j ≤ β∗
j ϕ j (s) + w j for s ∈ (ŝrational

j , ŝnarrow
j ], a contradiction.

For the second case we again assume that β∗
i > 0, as otherwise ŝnarrow

i = 1 in which

case the result holds. Then ϕi (s) = vi (s) – 1–P(s)
p(s) v ′i (s) ≥ 0 for any s ∈ [ŝnarrow

i , 1].

Otherwise there is a s̃i ∈ (ŝnarrow
i , 1] such that by IVV β∗

i ϕi (s) + wi < 0 for all s ∈

[ŝnarrow
i , s̃i ], and the principal could then switch to implementing gi (0|s) = 1 for all

s ∈ [ŝnarrow
i , s̃i ] and obtain a higher payoff.

Now for contradiction assume ŝrational
i > ŝnarrow

i . We have that ϕi (s) ≥ 0 and thus

ϕi (s)+wi ≥ β∗
i ϕi (s)+wi for any s ∈ [ŝnarrow

i , ŝrational
i ]. Then optimality of ŝrational

i is
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contradicted by the fact that optimality of ŝnarrow
i requires 0 < β∗

i ϕi (s)+wi ≤ ϕi (s)+wi

for all s ∈ (ŝnarrow
i , ŝrational

i ], where the first strict inequality follows from IVV.

Proof of Proposition 4

For any fixed threshold strategy and fixed β the difference in the principal’s objective

can be written as

W (ŝ) – W (ŝ ;β)

= ∑
i∈N

∫ 1

ŝi
[(ϕi (s) + wi ) – βi (ϕi (s) + wi )] p(s)ds

= ∑
i∈N

(1 – βi )
∫ 1

ŝi
(vi (s) –

1 – P(s)
p(s)

v ′i (s)) p(s)ds

= ∑
i∈N

(1 – βi )vi (ŝi )(1 – P(ŝi ))

where the last line follows from the fact that
∫ 1
ŝi (vi (s)–

1–P(s)
p(s) v ′i (s)) p(s)ds = vi (ŝi )(1–

P(ŝi )). Then as ŝi ∈ [0, 1] for the first case where vi (s) ≤ 0 clearly we have W (ŝ) ≤

W (ŝ ;β) and for the second case where 0 ≤ vi (s) we have W (ŝ) ≥ W (ŝ ;β).

Proof of Proposition 6

Let (ŝ∗,β∗) be the saddle point solution to the characterization problem (16). If for any

pair of dimensions i , j ∈ N , β∗
i ,β

∗
j ∈ (0, 1) then

∫ 1

ŝi
(v(s) –

1 – P(s)
p(s)

v ′(s)) p(s)ds =
∫ 1

ŝ j

(v(s) –
1 – P(s)

p(s)
v ′(s)) p(s)ds

as otherwise we would have β∗
k = 0 for one of the dimensions k = {i , j } as putting any

weight on that dimension would not be minimizing.

The remaining case is when β∗
i = 0 for some i ∈ N . Then it is optimal for the

principal to implement threshold ŝ∗i = 0 when wi > 0 and ŝ∗i = 1 when wi < 0. But

then in both cases either all dimensions either choose the same marginal strategy as on i ,

in which case the result holds, or the solution to the minimization problem would be to

have β∗
i > 0, a contradiction. To see this, in the first case for any j ∈ N unless ŝ∗j = 0
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we have.

∫ 1

0
(v(s) –

1 – P(s)
p(s)

v ′(s)) p(s)ds <
∫ 1

ŝ∗j
(v(s) –

1 – P(s)
p(s)

v ′(s)) p(s)ds = h(ŝ∗j )(1 – P(ŝ∗j ))

as v(s) < h(1) ≤ 0 for all s ∈ S \ {1}. For the second case, for all j ∈ N unless ŝ∗j = 1

0 =
∫ 1

1
(v(s) –

1 – P(s)
p(s)

v ′(s)) p(s)ds <
∫ 1

ŝ∗j
(v(s) –

1 – P(s)
p(s)

v ′(s)) p(s)ds = h(ŝ∗j )(1 – P(ŝ∗j ))

as 0 ≤ h(0) < v(s) for all s ∈ S \ {0}.

We see that we must have that β∗
i ∈ (0, 1) for all i ∈ N . Rearranging the implied

equality, we have that for any i , j ∈ N

∫ 1

ŝ∗i
(v(s) –

1 – P(s)
p(s)

v ′(s)) p(s)ds =
∫ 1

ŝ∗j
(v(s) –

1 – P(s)
p(s)

v ′(s)) p(s)ds

⇔
∫ ŝ j

ŝ∗i
(v(s) –

1 – P(s)
p(s)

v ′(s)) p(s)ds = 0

which implies ŝ∗i = ŝ∗j by IVV.

Proof of Proposition 5

For any fixed n, by Proposition 6 we have that ŝ(n)
i = ŝ(n) for all i ∈ N under the

symmetric dimension space assumption. Given the principal’s optimal thresholds ŝ(n),

the saddle point problem in Theorem 1 is

min
β∈[0,1]n ,∑i∈N βi=1

W (ŝ(n),β)

= ∑
i∈N

[βi

∫ 1

ŝ(n)
(
1
n

v(s) –
1 – P(s)

p(s)
1
n

v ′(s)) p(s)ds +
1
n

w(1 – P(ŝ(n)))]
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This has solution βi = 1
n for all i ∈ N . The optimal threshold ŝn can then be charac-

terized by the following variational inequality. For all s ∈ S we must have

(s – ŝ(n))(
1
n

(
1
n

v(s) –
1 – P(s)

p(s)
1
n

v ′(s)) +
1
n

w) ≥ 0

⇔

(s – ŝ(n))((
1
n

v(s) –
1 – P(s)

p(s)
1
n

v ′(s)) + w) ≥ 0

If w > 0, there exists an n such that for all ñ ≥ n since h(s) is bounded.

1
ñ

(h(0) –
1 – P(0̂)

p(0̂)
v ′(0)) + w > 0

By IVV, we then have that ( 1
n v(s) – 1–P(s)

p(s)
1
n v ′(s)) + w > 0 for all s ∈ S . Thus the only

solution to the variational inequality is ŝ(ñ) = 0, as if ŝ(n) > 0 then the inequality is

violated for all s ∈ [0, ŝ(n)].

We can make an analogous argument when w < 0 to show the second part.

Proof of Lemma 3

Let Ûi (s , ai ) = vi (s)ai + t i (ai ). Clearly Ûi (s , 1) – Ûi (s , 0) = vi (s) + t i (1) – t i (0) is

increasing in s . Let qh
i be the lottery in Gi that puts maximal probability on ai = 1,

and q l
i be the analogous lottery for ai = 0. If Gi = ∆(Ai ) then we must have qh

i = 1,

q l
i = 0. There is a threshold ŝi such that Ûi (s , 1) > Ûi (s , 0) for all s > ŝi , in which case

type s will choose the lottery qh
i from Gi . The same logic applies for types s < ŝi who

will choose lottery q l
i . The types who are indifferent have measure zero, so it is without

loss for them to choose qh
i also.

Given a random threshold strategy, the beliefs in the proposition statement ensure

that the agent is indifferent between taking either action at the threshold.

vi (ŝi ) + t i (1) = t i (0)

They then prefer to take the lottery with the higher probability of ai = 1 if and only if

their type is above the threshold. The restrictions contain all lotteries that are chosen by
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some type under the random threshold strategy.

Proof of Theorem 2

The same proof as in Theorem 1 applies up to Step 3. Step 3 still applies but the

upper bound problem modified so that we no longer have U (0) ∈ Rn
≥0, but instead

U (0) ∈ {U ∈ Rn : ∑i∈N Ui = 0} ≡ USN . The upper bound problem is then

min
β∈∆(N )

sup
ŝ∈Sn ,U (0)∈USN

W (ŝ ,U (0),β) = W (ŝ∗,U (0)∗,β∗)

= sup
ŝ∈Sn ,U (0)∈USN

min
β∈∆(N )

W (ŝ ,U (0),β)

with

W (ŝ ,U (0),β) = ∑
j ∈N

[–β j U j (0) +
∫ 1

ŝi
(ϕi (s) + wi ) p(s)ds ]

The saddle point values β∗ must be such that β∗
i = 1

n for all i ∈ N , as otherwise β∗
j > 1

n

for some j ∈ N and we can choose U j (0) = U , U j (0) = – 1
n–1U for any U < 0,

allowing us to obtain an arbitrarily large payoff.

With β∗ = ( 1
n , ..., 1

n ), we can attain the value of the upper bound in the full problem

by setting U (0) such that ∑i∈N U i (0) = 0 and for any i , j ∈ N the statistical correctness

constraint U i (0)–vi (s)(1–P(ŝi )) = U j (0)–v j (s)(1–P(ŝ j )) holds. This can be achieved

by

U i (0) = vi (s)(1 – P(ŝi )) –
1
n ∑

j ∈N
v j (s)(1 – P(ŝ j )) for all i ∈ N

Proof of Proposition 7

For the second case, Proposition 4 the result holds if the principal is restricted to im-

plement a threshold strategy. Since the principal can also implement a non-threshold

strategy in the rational benchmark, the result holds without IVV.

For the first case, let g int be an interval strategy with k intervals. Let Nl ⊆ N be the

subset of dimensions such that the agent takes the action ai = 1 for some type in interval
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l ; if i ∈ Nl then g int
i (ai |s) = 1 for all s ∈ [zl –1, zl ).

For each dimension i ∈ N , we define the smallest type s i that both takes the action

ai = 1 under g int and for which the principal would get a positive payoff if all types above

where to take the action ai = 1; s i = min{s ∈ S : g int
i (1|s) = 1 and wi + vi (s) ≥ 0}.

Each s i is in one of the k intervals of g int , for each i ∈ N denote this interval by

[zl i–1, zl i ). We have that s i is well defined because the lower bound of any [zl i–1, zl i ) is

closed. The set of dimensions at which action 1 is taken in this interval is denoted Nl i

and includes i . For each dimension i , denote the interval at which action ai = 1 is first

taken by mi . The lowest type that takes action ai = 1 is then zmi–1.

Let i∗ = arg mini∈N vi (s i )(1 – P(s i )), we define a threshold strategy g̃ such that the

action 1 is only ever taken on dimension i∗, and it is only taken by types above s i∗ ;

g̃i∗(1|s) = 1{s ≥ s i∗} and g̃k (1|s) = 0 for all s ∈ S and k ∈ N \ {i∗}.

We now calculate maximum loss to the principal from switching from g int to g̃ . We

can write the principal’s payoff from action ai = 1 in interval [zl –1, zl ) as

(wi + vi (zl –1))(1 – P(zl –1)) – (wi + vi (zl ))(1 – P(zl ))

= (wi + vi (zl –1))(P(zl ) – P(zl –1)) – (vi (zl ) – vi (zl –1))(1 – P(zl ))

The loss in dimension i∗ from switching to g̃ is

k
∑

l =mi∗
1{i∗ ∈ Nl }[(wi∗ + vi∗(zl –1))(P(zl ) – P(zl –1)) – (vi∗(zl ) – vi∗(zl –1))(1 – P(zl ))]

– (wi∗ + vi∗(s i ))(1 – P(s i ))

By splitting the summation in the first line and rewriting the second line in terms of a
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sum over intervals we have that this is equal to

l i∗–1
∑

l =mi∗
1{i∗ ∈ Nl }[(wi∗ + vi∗(zl –1))(P(zl ) – P(zl –1)) – (vi∗(zl ) – vi∗(zl –1))(1 – P(zl ))]

+
k
∑

l =l i∗
1{i∗ ∈ Nl }[(wi∗ + vi∗(zl –1))(P(zl ) – P(zl –1)) – (vi∗(zl ) – vi∗(zl –1))(1 – P(zl ))]

–
k
∑

l =l i∗
[(wi∗ + vi∗(zl –1))(P(zl ) – P(zl –1)) – (vi∗(zl ) – vi∗(zl –1))(1 – P(zl ))]

+ (wi∗ + vi∗(zl i∗–1))(P(s i∗) – P(zl i∗–1)) – (vi∗(s i∗) – vi∗(zl i∗–1))(1 – P(s i∗))

This has the following upper bound, as if s i∗ > tl i∗–1 then wi∗ + vi∗(zl i∗–1) < 0, and for

all mi∗ ≤ l < l i∗ , wi∗ + vi∗(zl –1) < 0 meaning the first and last lines are negative.

k
∑

l =l i∗
1{i∗ ∈ Nl }[(wi∗ + vi∗(zl –1))(P(zl ) – P(zl –1)) – (vi∗(zl ) – vi∗(zl –1))(1 – P(zl ))]

–
k
∑

l =l i∗
[(wi∗ + vi∗(zl –1))(P(zl ) – P(zl –1)) – (vi∗(zl ) – vi∗(zl –1))(1 – P(zl ))]

Adding and subtracting terms then gives us

k
∑

l =l i∗
(P(zl ) – P(zl –1))[ ∑

j ∈Nl

(w j + v j (zl –1)) – ∑
i∈N ∗

(wi + vi (zl –1))]

–
k
∑

l =l i∗
(1 – P(zl ))[ ∑

j ∈Nl

(v j (zl ) – v j (zl –1)) – ∑
i∈N ∗

(vi (zl ) – vi (zl –1))]

–
k
∑

l =l i∗
∑

j ∈Nl \{i∗}
[(w j + v j (zl –1))(P(zl ) – P(zl –1)) – (v j (zl ) – v j (zl –1))(1 – P(zl ))]

+
k
∑

l =l i∗
∑

i∈N ∗\{i∗}
[(wi + vi (zl –1))(P(zl ) – P(zl –1)) – (vi (zl ) – vi (zl –1))(1 – P(zl ))]

Subtracting out terms in the first line and last lines (the new last line is terms that do

don subtract out), removing the last negative terms in the last line and rearranging the
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second line then gives us a new upper bound

k
∑

l =l i∗
(P(zl ) – P(zl –1)) ∑

j ∈Nl \{i∗}
(w j + v j (zl –1))

–
k
∑

l =l i∗
(P(zl ) – P(zl –1))[

l
∑

m=l i∗
∑

j ∈Nm

(v j (zm) – v j (zm–1)) –
l
∑

m=l i∗
∑

i∈N ∗
(vi (zm) – vi (zm–1))]

–
k
∑

l =l i∗
∑

j ∈Nl \{i∗}
[(w j + v j (zl –1))(P(zl ) – P(zl –1)) – (v j (zl ) – v j (zl –1))(1 – P(zl ))]

–
k
∑

l =l i∗
(P(zl ) – P(zl –1))1{i∗ ∉ Nl }(wi∗ + vi∗(zl –1))

≤
k
∑

l =l i∗
(P(zl ) – P(zl –1))[ ∑

j ∈Nl \{i∗}
(w j + v j (zl –1))]

–
k
∑

l =l i∗
(P(zl ) – P(zl –1))[

l
∑

m=l i∗
∑

j ∈Nm

(v j (zm) – v j (zm–1)) –
l
∑

m=l i∗
∑

i∈N ∗
(vi (zm) – vi (zm–1))]

–
k
∑

l =l i∗
∑

j ∈Nl \{i∗}
[(w j + v j (zl –1))(P(zl ) – P(zl –1)) – (v j (zl ) – v j (zl –1))(1 – P(zl ))]

Where the inequality follows as the only interval l ≥ l i∗ for which we can have wi∗ +

vi∗(zl –1) < 0 is l = l i∗ , and i∗ ∈ Nl i∗ by definition.

For g int to be IC, Lemma A.1 requires that for any intervals l ,m ∈ {1, ..., k} and any

types s ∈ [zl –1, zl ), s ′ ∈ [zm–1, zm)

∑
i∈Nl

(vi (s) – vi (s ′)) ≥ ∑
i∈Nm

(vi (s) – vi (s ′))

From this and continuity of vi (.), we have that for any l ∈ {1, .., k}

k
∑

m=l
∑

i∈Nm

(vi (zm) – vi (zm–1)) ≥
k
∑

m=l
∑

j ∈Nl

(v j (zm) – v j (zm–1)) = ∑
j ∈Nl

(v j (zm) – v j (zl –1))

Combining this with our previous inequality gives that the principal’s worst case loss

from switching the actions on dimension i∗ is

k
∑

l =l i∗
(P(zl ) – P(zl –1)) ∑

j ∈Nl \{i∗}
(w j + v j (zl –1))

–
k
∑

l =l i∗
∑

j ∈Nl \{i∗}
[(w j + v j (zl –1))(P(zl ) – P(zl –1)) – (v j (zl ) – v j (zl –1))(1 – P(zl ))]
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The loss from switching to g̃ on dimensions j ∈ N \ {i∗} is

k
∑

l =1
∑

j ∈Nl \{i∗}
[(w j + v j (zl –1))(P(zl ) – P(zl –1)) – (v j (zl ) – v j (zl –1))(1 – P(zl ))]

≤
k
∑

l =l i∗
∑

j ∈Nl \{i∗}
[(w j + v j (zl –1))(P(zl ) – P(zl –1)) – (v j (zl ) – v j (zl –1))(1 – P(zl ))]

+
l i∗–1

∑
l =1

(P(zl ) – P(zl –1)) ∑
j ∈Nl \{i∗}

(w j + v j (zl –1))

So on all dimensions the loss from switching is at most

k
∑

l =1
(P(zl ) – P(zl –1)) ∑

j ∈Nl \{i∗}
(w j + v j (zl –1))

Since for any j ∈ N , on any interval l such that j ∈ Nl and zl –1 < s j we have

w j +v j (zl –1) < 0, the worst case loss to the principal is bounded below ∑ j ∈N \{i∗} w j (1–

P(s j )). We now show that under narrow inference we can implement a deterministic

threshold strategy g∗ such that gi (1|s) = 1{s ≥ s i} for all i ∈ N , with the same cost to

the principal as the outcome function that implements the deterministic strategy g̃ under

rational inference. This gives our result as we have lost at most ∑ j ∈N \{i∗} w j (1–P(s j ))

from switching from g int to g̃ in the rational benchmark, and we can gain this for free

under narrow inference.

The cost of the outcome function that implements g̃ under rational inference is

vi∗(s i∗)(1 – P(s i∗)). If we take beliefs such that t i∗(0) = 0, t i∗(1) = –vi∗(s i∗), and

for all j ∈ N \ {i∗}

t j (0) = v j (s j )(1 – P(s j )) – vi∗(s i∗)(1 – P(s i∗)) ≥ 0

t j (1) = t j (0) – v j (s j )

then from Proposition 2 there is an outcome function that implements these beliefs since

g∗ is a deterministic threshold strategy.

59



Proof of Theorem 3

Step 1 of Theorem 1 works as before. From Step 2 onwards, we replace the objective by

Ŵ (x ,U (0),β) = ∑
j ∈N

[–β j U j (0) +
∫ 1

x j

(ϕ̂ j (P–1(u)) + w j )du]

where P–1(.) is the strictly increasing quantile function for the type distribution as be-

fore. This is an upper bound on the original objective as by definition of the upper

concave envelope,
∫ 1
x (ϕ̂i (P–1(u))du = Φ̂i (x ) ≥ Φi (x ) =

∫ 1
x (ϕi (P–1(u))du for all i ∈ N ,

x ∈ [0, 1]. Since by Lemma 3 only deterministic threshold strategies are NIC and all

deterministic threshold strategies can be made NIC by some outcome function, the new

objective remains an upper bound of the full problem even without increasing ϕi (.).

Since ϕ̂i (.) is increasing in s the new objective is concave for fixed β, and we

can make the same argument as we made for Theorem 1 and obtain a saddle point

(ŝ∗,U (0)∗,β∗). This means (ŝ∗(β∗),U (0)∗,β∗) is also a saddle point. In Ŵ (ŝ ,U (0),β)

the term for U (0) is separable, therefore ŝ∗(β) ∈ arg maxŝ∈[0,1]n Ŵ (ŝ ,U (0),β) for all

U (0). Thus, these thresholds maximize the new objective for fixed β. Since ŝ∗ ∈

arg maxs∈S Ŵ (ŝ∗,U (0)∗,β∗), we must have Ŵ (ŝ∗(β∗),U (0)∗,β∗) = Ŵ (ŝ∗,U (0)∗,β∗).

We now apply the same argument as Myerson (1981). For any i ∈ N

∫ 1

ŝi
(ϕi (s) – ϕ̂i (s)) p(s)ds =

∫ 1

P(ŝi )
(ϕi (P–1(u)) – ϕ̂i (P

–1(u)))du

=
∫ 1

0
(ϕi (P–1(u)) – ϕ̂i (P

–1(u)))du –
∫ P(ŝi )

0
(ϕi (P–1(u)) – ϕ̂i (P

–1(u)))du

= –(Φi (1) – Φ̂i (1)) + (Φi (0) – Φ̂i (0)) + Φi (P(ŝi )) – Φ̂i (P(ŝi ))

= Φi (P(ŝi )) – Φ̂i (P(ŝi ))

where we use the fact that Φi (1) = Φ̂i (1) and Φi (0) = Φ̂i (0)7.

We can show that Φi (P(ŝ∗i (β))) = Φ̂i (P(ŝ∗i (β))) for any β. When ŝ∗i (β) ∈ {0, 1}

this is clear. If ŝ∗i (β) ∈ (0, 1) then βi ϕ̂i (ŝ∗i (β)) + wi = 0, and by definition ŝ∗i (β) is

the smallest type satisfying this. Since Φ̂i (P(s)) > Φi (P(s)) only in intervals s ∈ [s , s)

where ϕ̂i (s) is constant, at ŝ∗i (β) we must have Φi (P(ŝ∗i (β))) = Φ̂i (P(ŝ∗i (β))) otherwise

7This follows from continuity of Φi (.).
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we can find a smaller threshold in the maximizing set.

For any β we can write the old objective as

W (ŝ ,U (0),β)

= ∑
j ∈N

[–β j U j (0) +
∫ 1

ŝ j

(β j ϕ j (s) + w j ) p(s)ds ]

= ∑
j ∈N

[–β j U j (0) +
∫ 1

ŝ j

(β j ϕ̂ j (s) + w j ) p(s)ds + β j

∫ 1

ŝ j

(ϕ j (s) – ϕ̂ j (s)) p(s)ds ]

= ∑
j ∈N

[–β j U j (0) +
∫ 1

ŝ j

(β j ϕ̂ j (s) + w j ) p(s)ds + β j (Φ j (P(ŝ j )) – Φ̂ j (P(ŝ j )))]

At ŝ∗(β∗), since Φi (P(ŝ∗i (β∗))) = Φ̂i (P(ŝ∗i (β∗))) the value the old and new ob-

jectives are identical for any β; W (ŝ∗(β∗),U (0),β) = Ŵ (ŝ∗(β∗),U (0),β). Thus,

(ŝ∗(β∗),U (0)∗,β∗) is a saddle point for the old objective also as for any (ŝ ,β)

W (ŝ∗(β∗),U (0)∗,β) ≥ min
β∈[0,1]n :∑i∈N βi=1

Ŵ (ŝ∗(β),U (0)∗β) = W (ŝ∗(β∗),U (0)∗,β∗)

= Ŵ (ŝ∗(β),U (0)∗,β∗) ≥ Ŵ (ŝ ,U (0)∗,β∗) ≥ W (ŝ ,U (0)∗,β∗)

We can then take apply Step 4 from Theorem 1 to show that this objective value can

be achieved in the full problem, which completes the proof.

A.3 Details for Examples

Example 3

We calculate the principal’s optimal mechanism under the true welfare participation

constraint when the principal is restricted to implementing a deterministic threshold

strategy. Using the construction in Proposition 2, we can write the outcome function
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that implements the beliefs for a threshold strategy where ŝ1 < ŝ2 as

t(0, 0) = t1(0) (49)

t(1, 0) =
P(ŝ2)

P(ŝ2) – P(ŝ1)
t2(0) –

P(ŝ1)
P(ŝ2) – P(ŝ1)

t1(0) (50)

t(1, 1) = t2(1) (51)

This means that the true welfare participation constraints in terms of beliefs are

t1(0) ≥ 0 (52)

P(ŝ2)
P(ŝ2) – P(ŝ1)

t2(0) –
P(ŝ1)

P(ŝ2) – P(ŝ1)
t1(0) + v1(ŝ1) ≥ 0 (53)

t2(1) + v1(ŝ2) + v2(ŝ2) ≥ 0 (54)

The beliefs must also satisfy the statistical correctness constraint by Lemma 2. This

requires that

P(ŝ1)t1(0) + (1 – P(ŝ1))t1(1) = P(ŝ2)t2(0) + (1 – P(ŝ2))t2(1)

⇔t1(0) – (1 – P(ŝ1))v1(ŝ1) = t2(0) – (1 – P(ŝ2))v2(ŝ2) (55)

The requirement that both these sets of constraints holds can be reduced to

t1(0) ≥ 0 (56)

t2(0) ≥ min{–v1(ŝ1), –
P(ŝ2)
P(ŝ1)

v1(ŝ1) +
P(ŝ1)

P(ŝ2) – P(ŝ1)
}[(1 – P(ŝ1)v1(ŝ1) – (1 – P(ŝ2)v2(ŝ2)]

(57)

Under the parametric assumptions

min{–v1(ŝ1), –
P(ŝ2)
P(ŝ1)

v1(ŝ1) +
P(ŝ1)

P(ŝ2) – P(ŝ1)
[(1 – P(ŝ1)v1(ŝ1) – (1 – P(ŝ2)v2(ŝ2)]}

= min{r(1 – ŝ2), r(1 – ŝ1) + 2r ŝ1 – r ŝ1(ŝ1 + ŝ2)}

Therefore by Lemma A.3 and the parametric assumptions, the objective value of the
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principal is

max
c∈MNICR(g)

W (t , g , S ) = min{W0,0(ŝ1, ŝ2),W1,0(ŝ1, ŝ2),W1,1(ŝ1, ŝ2)}

W0,0(ŝ1, ŝ2) = –r(1 – ŝ1)2 + (1 – ŝ1)w1 + (1 – ŝ2)w2

W1,0(ŝ1, ŝ2) = –r(1 – ŝ1) + 2r ŝ1 – r ŝ1(ŝ1 + ŝ2) – r(1 – ŝ2)2 + (1 – ŝ1)w1 + (1 – ŝ2)w2

W1,1(ŝ1, ŝ2) = –r(1 – ŝ2) – r(1 – ŝ2)2 + (1 – ŝ1)w1 + (1 – ŝ2)w2 (58)

We consider parameters at which there is a saddle point where only the true welfare par-

ticipation constraint for the worst-off type choosing (1, 0) binds. Consider the thresholds

ŝ1 < ŝ2 that maximize

W1,0(ŝ1, ŝ2) = –r(1 – ŝ1) – 2r ŝ1 + r ŝ1(ŝ1 + ŝ2) – r(1 – ŝ2)2 + (1 – ŝ1)w1 + (1 – ŝ2)w2

(59)

When the maximizing thresholds are interior, they are equal to

ŝ∗1 =
4
3

–
2
3
w1
r

+
1
3
w2
r

ŝ∗2 =
1
3

–
2
3
w2
r

+
1
3
w1
r

Under parameters w1 = 1,w2 = 0.3, r = 0.5. We then have that these thresholds and

the corresponding value of the principal’s objective are

ŝ∗1 = 0.2, ŝ∗2 = 0.6

min{W0,0(ŝ∗1 , ŝ∗2 ),W1,0(ŝ∗1 , ŝ∗2 ),W1,1(ŝ∗1 , ŝ∗2 )} = W1,0(ŝ∗1 , ŝ∗2 )

= min{0.6, 0.56, 0.64} = 0.56 (60)

The case where ŝ1 > ŝ2 is symmetric except that the objective value is lower since

w1 > w2. We now consider the symmetric threshold case ŝ1 = ŝ2 = ŝ . Here the principal
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chooses a single threshold to maximize

max
c∈MNICR(g)

W (t , g , S ) = min{W0,0(ŝ),W1,1(ŝ)} = W1,1(ŝ)

W0,0(ŝ) = –r(1 – ŝ)2 + (1 – ŝ)w1 + (1 – ŝ)w2

W1,1(ŝ) = –r(1 – ŝ) – r(1 – ŝ)2 + (1 – ŝ)w1 + (1 – ŝ)w2 (61)

The optimal threshold under our parameters is ŝ = 3
2 – w1+w2

2r = 0.2, which gives an

objective value of maxc∈MNICR(g) W (t , g , S ) = W1,1(ŝ) = 0.32. This is less than the

objective value obtained by ŝ∗1 = 0.2, ŝ∗2 = 0.6, which is therefore optimal for the principal

as it is a saddle point deterministic threshold strategy.
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